Patents by Inventor Harry W. Deckman

Harry W. Deckman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6726850
    Abstract: A multistage catalytic partial oxidation (CPO) process for oxidizing a hydrocarbon feedstream comprising C1-C4 hydrocarbons, with an oxygen-containing feedstream to produce a product comprising CO and H2, also known as synthesis gas or syngas.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: April 27, 2004
    Inventors: Sebastian C. Reyes, Jennifer S. Feeley, Frank Hershkowitz, Harry W. Deckman, Ioannis P. Androulakis
  • Publication number: 20030235529
    Abstract: Synthesis gas is produced though a cyclic method where the first step of the cycle includes reforming a hydrocarbon feed over a catalyst to synthesis gas in a first zone of a bed and the second step reheats this first zone. A hydrocarbon feed is introduced to a bed along with CO2 and optionally steam where it is reformed into synthesis gas. The synthesis gas is collected at a second zone of the bed and an oxygen-containing gas is then introduced to this second zone of the bed and combusted with a fuel, thereby reheating the first zone to sufficient reforming temperatures. Additionally, a non-combusting gas can also be introduced to the second zone to move heat from the second zone to the first zone.
    Type: Application
    Filed: June 10, 2003
    Publication date: December 25, 2003
    Inventors: Frank Hershkowitz, Harry W. Deckman
  • Patent number: 6632266
    Abstract: The invention relates to a method of separating one or more components from a multi-component gas stream comprising at least one non-acid gas component and at least one acid gas component. A multi-component gas stream at a pressure above 1,200 psia (82.8 bar) and a temperature above 120° F. (48.9° C.) with the concentration of at least one acid gas component in the gas stream being at least 20 mole percent is passed to a membrane system that selectively separates at least one acid gas component from the multi-component gas stream as a permeate stream. The permeate stream has a pressure at least 20% of the pressure of the feed pressure.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: October 14, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Eugene R. Thomas, Harry W. Deckman, Donald J. Victory, Ronald R. Chance, Russell H. Oelfke
  • Publication number: 20030131726
    Abstract: The invention relates to a method of separating one or more components from a multi-component gas stream comprising at least one non-acid gas component and at least one acid gas component. A multi-component gas stream at a pressure above 1,200 psia (82.8 bar) and a temperature above 120° F. (48.9° C.) with the concentration of at least one acid gas component in the gas stream being at least 20 mole percent is passed to a membrane system that selectively separates at least one acid gas component from the multi-component gas stream as a permeate stream. The permeate stream has a pressure of at least 20% of the pressure of the feed pressure.
    Type: Application
    Filed: September 4, 2002
    Publication date: July 17, 2003
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Eugene R. Thomas, Harry W. Deckman, Donald J. Victory, Ronald R. Chance, Russell H. Oelfke
  • Publication number: 20030047310
    Abstract: The invention is a method and system of separating a multi-component fluid in a wellbore. At least one fluid separation membrane comprising a feed side and a permeate side is incorporated in the wellbore. A flowing stream of the multi-component fluid obtained from a subterranean zone being in fluid communication with the wellbore is passed across the feed side of the membrane at a first pressure. A retentate stream depleted in at least one component compared to the multi-component fluid is withdrawn from the feed side of the membrane and passed to the earth's surface. A permeate stream at a second pressure is withdrawn from the permeate side, in which the permeate stream is enriched in at least one component compared with the multi-component fluid. The second pressure is controlled to maintain the second pressure below the first pressure.
    Type: Application
    Filed: September 4, 2002
    Publication date: March 13, 2003
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Eugene R. Thomas, Thomas A. Paulley, Donald J. Victory, Harry W. Deckman
  • Publication number: 20020065444
    Abstract: A process and a system for increasing para-xylene production from a C8 aromatic feedstream by coupling at least one xylene isomerization reactor with at least one pressure swing adsorption unit or temperature swing absorption unit to produce a product having a super-equilibrium para-xylene concentration. This product is then subjected to para-xylene separation and purification.
    Type: Application
    Filed: February 22, 2001
    Publication date: May 30, 2002
    Inventors: Harry W. Deckman, Ronald Richard Chance, John Di-Yi Ou, James Alexander McHenry, Juan Joes Reinoso
  • Patent number: 6267912
    Abstract: A novel injector/reactor apparatus and an efficient process for the partial oxidation of light hydrocarbon gases, such as methane, to convert such gases to useful synthesis gas for recovery and/or subsequent hydrocarbon synthesis. Sources of a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas are preheated and pressurized and injected through an injector means at high velocity into admixture with each other in the desired relative proportions, at a plurality of mixing nozzles which are open to the catalytic partial oxidation reaction zone and are uniformly-spaced over the face of the injector means, to form a reactant gaseous premix having a pressure drop equal to at least about 3% of the lowest upstream pressure of either of said gases.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: July 31, 2001
    Assignee: Exxon Research and Engineering Co.
    Inventors: Frank Hershkowitz, Harry W. Deckman, Robert P. Reynolds, Constantine P. Gonatas, John W. Fulton, Leonard Schoenman, Jack I. Ito, Leroy R. Clavenna
  • Patent number: 5980782
    Abstract: A novel fluidized bed syngas (FBSG) injector/reactor apparatus and an efficient process for the partial oxidation and steam reforming of light hydrocarbon gases such as methane, to convert such gases to useful synthesis gas containing CO and H.sub.2 for recovery and/or subsequent hydrocarbon synthesis. Sources of a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas are preheated and pressurized and injected through gas orifices of an injector at high velocity and comparable momentums into admixture with each other in the desired proportions, at a plurality of mixing chambers or recessed cups which are open to the fluidized bed reaction zone of a reaction chamber and are spaced over the face of the injector, to form a reactant gas premix having a pressure drop of at least 1% through the injector.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: November 9, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Frank Hershkowitz, Harry W. Deckman, Robert P. Reynolds, Constantine P. Gonatas, John W. Fulton, Leonard Schoenman, Jack I. Ito, Russell J. Koveal, Lavanga R. Veluswamy, James H. Taylor, Alfredo M. Lopez
  • Patent number: 5980596
    Abstract: A novel injector/reactor apparatus and an efficient process for the partial oxidation of light hydrocarbon gases, such as methane, to convert such gases to useful synthesis gas for subsequent hydrocarbon synthesis. Sources of a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas are preheated and pressurized and injected through an injector means at high velocity into admixture with each other in the desired proportions, preferably at comparable momentums, at a plurality of mixing nozzles which are open to the reaction zone of a reactor and are spaced over the face of the injector, to form a reactant gas premix having a pressure drop equal to at least 1% of the lowest upstream pressure of either of said gas streams. The gas premix is ejected in a time period which preferably is less than 9 milliseconds, at a velocity between about 25 to 1000 feet/second, into a reaction zone comprising a partial oxidation zone, so that the gas mixture reacts therein.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: November 9, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Frank Hershkowitz, Harry W. Deckman, Robert P. Reynolds, Constantine P. Gonatas, John W. Fulton, Leonard Schoenman, Jack I. Ito, Russell J. Koveal, Costas A. Coulaloglou
  • Patent number: 5935489
    Abstract: A novel injector/reactor apparatus and an efficient process for the partial oxidation of light hydrocarbon gases, such as methane, to convert such gases to useful synthesis gas for recovery and/or subsequent hydrocarbon synthesis. Sources comprising a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas, preheated and pressurized, are injected through an injector means at high velocity into admixture with each other in the desired relative proportions, at a plurality of mixing nozzles which are open to the partial oxidation zone of a reactor and are uniformly-spaced over the face of the injector means, to form a reactant gaseous premix having a pressure at least 3% lower than the lowest upstream pressure of either of the streams of the individual gases. The gaseous premix is injected in a time period which is less than its autoignition time, preferably less than 9 milliseconds, at a velocity between about 25 to 1000 feet/second, into the partial oxidation zone of the reactor.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: August 10, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Frank Hershkowitz, Harry W. Deckman, Robert P. Reynolds, Constantine P. Gonatas, John W. Fulton, Leonard Schoenman, Jack I. Ito
  • Patent number: 5886056
    Abstract: A novel injector/reactor apparatus and an efficient process for the partial oxidation of light hydrocarbon gases, such as methane, to convert such gases to useful synthesis gas for recovery and/or subsequent hydrocarbon synthesis. Sources of a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas are preheated and pressurized and injected through an injector means at high velocity into admixture with each other in the desired relating proportions, at a plurality of mixing nozzles which are open to the partial oxidation zone of a reactor and are uniformly-spaced over the face of the injector means, to form a gaseous premix having a pressure drop through the injector. The gaseous premix is injected in a time period which is less than 5 milliseconds, preferably at a velocity between about 25 to 1000 feet/second, into a partial oxidation reaction zone so that the gaseous premix reacts therein, to reduce the amounts of CO.sub.2, H.sub.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: March 23, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Frank Hershkowitz, Harry W. Deckman, Robert P. Reynolds, Constantine P. Gonatas, John W. Fulton, Leonard Schoenman, Jack I. Ito
  • Patent number: 5883138
    Abstract: A novel injector/reactor apparatus and an efficient process for the partial oxidation of light hydrocarbon gases, such as methane, to convert such gases to useful synthesis gas for recovery and/or subsequent hydrocarbon synthesis. Sources of a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas are preheated and pressurized and injected through an injector means at high velocity into admixture with each other in the desired proportions, at a plurality of mixing nozzles which are open to the catalytic partial oxidation reaction zone of a reactor and are uniformly-spaced over the face of the injector, to form a reactant gaseous premix having a pressure drop through the injector.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: March 16, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Frank Hershkowitz, Harry W. Deckman, Robert P. Reynolds, Constantine P. Gonatas, John W. Fulton, Leonard Schoenman, Jack I. Ito, Leroy R. Clavenna
  • Patent number: 5675041
    Abstract: The invention is a process for production of C.sub.3 to C.sub.6 aldehydes by hydroformylating a mixture containing: (a) C.sub.2 to C.sub.5 olefins and mixtures thereof, and (b) (i) C.sub.2 to C.sub.5 alkynes and mixtures thereof or (ii) C.sub.3 to C.sub.5 cumulated dienes and mixtures thereof or (iii) mixtures of (i) and (ii), with CO, H.sub.2 and a solution of a rhodium complex catalyst produced by complexing Rh and an organophosphorus compound at a concentration of Rh in solution from 1 to 1000 ppm by weight. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio of at least 30. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio greater than the value R.sub.L defined by the formula: ##EQU1## in which R.sub.B is the P/Rh ratio sufficient for a catalytically active Rh complex, pKa.sub.TPP is the pKa value for triphenylphosphine, pKa.sub.L is the pKa value for the triorganophosphorus compound, R is the gas constant, and .DELTA.S.sub.
    Type: Grant
    Filed: December 15, 1995
    Date of Patent: October 7, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Gabor Kiss, Frank Hershkowitz, Harry W. Deckman, Michael Gerard Matturro, Istvan T. Horvath, Anthony M. Dean, Raymond A. Cook
  • Patent number: 5600017
    Abstract: The invention is a process for hydroformylating multicomponent syngas feed streams containing CO, H.sub.2, C.sub.2 to C.sub.5 olefins and mixtures thereof and C.sub.2 to C.sub.5 alkynes and mixtures thereof by contacting the multicomponent syngas feed stream with a solution of an oil soluble rhodium complex catalyst produced by complexing in solution a low valence Rh and an oil soluble triorganophoshorous compound wherein the catalyst has a P/Rh ratio of at least 30, a concentration of Rh in solution from about 1 to about 1000 ppm by weight, a total concentration of coordinatively active P of at least about 0.01 mol/l, and a ratio of [P]/p.sub.co of at least 0.1 mmol/l/kPa, wherein [P] is the total concentration of coordinatively active phosphorous in the solution, and p.sub.co is the partial pressure of CO, to produce the corresponding C.sub.3 to C.sub.6 aldehydes. The process has utility for the hydroformylation of streams that contain olefins and alkynes.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: February 4, 1997
    Assignee: Exxon Research and Engineering Company
    Inventors: Gabor Kiss, Michael G. Matturro, Harry W. Deckman, Istvan T. Horvath, Anthony M. Dean, Frank Hershkowitz, Raymond A. Cook
  • Patent number: 5395979
    Abstract: A catalyst for use in hydroformylation of olefins which comprises a Group VIII noble metal complexed with a phosphine ligand having at least one alkyl or aryl group bonded thereto, such as tris-4-propylphenyl phosphines and tris-4-octylphenyl phosphines. These and other triphenylphosphine catalysts can be separated from a crude reaction product of a noble metal-catalyzed hydroformylation reaction by contacting the crude reaction product with a dense polymeric, nonpolar membrane, preferably nonpolar polyolefin membranes.
    Type: Grant
    Filed: February 25, 1993
    Date of Patent: March 7, 1995
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Harry W. Deckman, Edward Kantner, Joel R. Livingston, Jr., Michael G. Matturro, Edmund J. Mozeleski
  • Patent number: 5210059
    Abstract: The present invention is a multilayered catalyst structure coated onto the surface of a membrane which does not have physical micropores. The non-microporous membrane serves as a mechanical support for the thin multilayered catalyst structure and also can be used to control the rate at which some reactants arrive at (or some products leave from) the multilayered catalyst structure.A multilayered catalyst structure is coated on the non-microporous membrane which is composed of at least a catalyst layer and a separate transport layer.
    Type: Grant
    Filed: October 10, 1991
    Date of Patent: May 11, 1993
    Assignee: Exxon Research & Engineering Company
    Inventors: Michael G. Matturo, Harry W. Deckman, James A. McHenry, Robert P. Reynolds, Jr.
  • Patent number: 5186833
    Abstract: The present invention provides a novel, porous, composite membrane comprising a metallic support having large pores and a microporous ceramic membrane deposited on the support and integral therewith. Preferably, the support is steel having pores in the range of from about 0.25 .mu.m to about 50 .mu.m and the ceramic membrane is alumina having pores ranging from about 5 .ANG.to about 2500 .ANG..
    Type: Grant
    Filed: October 10, 1991
    Date of Patent: February 16, 1993
    Assignee: Exxon Research and Engineering Company
    Inventors: James A. Mchenry, Harry W. Deckman, Wen-Yih F. Lai, Michael G. Matturro, Allan J. Jacobson, Jack W. Johnson
  • Patent number: 5183788
    Abstract: Accordingly, there is provided a catalytic membrane comprising a porous substrate having a first surface and a second surface. The substrate has micropores, for example, pores ranging from about 10 .ANG. to about 2000 .ANG. in diameter, at least in a region extending from the first surface toward the second surface for a preselected distance. Preferably, the preselected distance will be sufficient to provide a measurable resistance to the flow of a fluid, such as a gas, through the micropores. A catalyst is deposited at least on the first surface of the substrate, although optionally, the catalyst is deposited on the substrate in the micorpore region. A transport layer is provided on the first surface of the substrate, including any catalyst on the first surface.
    Type: Grant
    Filed: October 10, 1991
    Date of Patent: February 2, 1993
    Assignee: Exxon Research and Engineering Company
    Inventors: Allan J. Jacobson, Wen-Yih F. Lai, Michael G. Matturro, Harry W. Deckman, James A. McHenry, Robert P. Reynolds, Qiyao Zhang
  • Patent number: 5162599
    Abstract: In its simplest sense, the present invention is directed toward a process for the thermal conversion of methane into unsaturated gaseous hydrocarbons, especially olefins, comprising first compressing methane in the presence of an inert gas having a higher ratio of heat capacities, Cp/Cv, than methane. The inert gas used is present in an amount sufficient to provide a compressed gas mixture having a peak temperature of adiabatic compression in the range of about 900.degree. C. to about 2200.degree. C. Under these conditions, at least some of the methane is converted to unsaturated gaseous hydrocarbons. Immediately thereafter, the compressed gas mixture is expanded, thereby substantially preventing thermal conversion of the gaseous hydrocarbons. Importantly, the compression and expansion are achieved in a single cycle of less than about one second.
    Type: Grant
    Filed: September 19, 1991
    Date of Patent: November 10, 1992
    Assignee: Exxon Research and Engineering Co.
    Inventors: Michael G. Matturro, Harry W. Deckman, Frank Hershkowitz, Anthony M. Dean
  • Patent number: 4891829
    Abstract: The present invention is an apparatus and a method for producing tomographic images of an object irradiated by a beam of collimated radiation transmitted in a plurality of rays through a set of coplanar sections of an object as viewed from a plurality of angles about a rotation axis. The apparatus includes an imaging electro-optic detector to record the transmitted radiation, wherein the electro-optic detector alters the image format, the format alteration being focused; means to determine and align the projected position of the rotation axis on the electro-optic detector; means to align the object with respect to the rotation axis; means to determine and assure spatial uniformity of detector response; means to reduce signal dependent backgrounds; means to determine the projection coefficients from the transmitted radiation with respect to one or more reference calibration exposures; and means to compute a reconstructed image of the object's attenuation coefficients.
    Type: Grant
    Filed: November 19, 1986
    Date of Patent: January 2, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Harry W. Deckman, Brian P. Flannery