Patents by Inventor Hartmut Enkisch

Hartmut Enkisch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9778576
    Abstract: An illumination optical unit for microlithography illuminates an object field with illumination light. The unit includes a first facet mirror that has a plurality of first facets, and a second facet mirror that has a plurality of second facets. The unit has facet pairs which include respectively a facet of the first facet mirror and a facet of the second facet mirror which predefine a plurality of illumination channels for illuminating the object field. At least some of the illumination channels have in each case an assigned polarization element for predefining an individual polarization state of the illumination light guided in the respective illumination channel.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: October 3, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Damian Fiolka, Michael Totzeck, Hartmut Enkisch, Stephan Muellender
  • Patent number: 9720329
    Abstract: The invention concerns a projection objective of a microlithographic projection exposure apparatus designed for EUV, for imaging an object plane illuminated in operation of the projection exposure apparatus into an image plane. The projection objective has at least one mirror segment arrangement comprising a plurality of separate mirror segments. Associated with the mirror segments of the same mirror segment arrangement are partial beam paths which are different from each other and which respectively provide for imaging of the object plane (OP) into the image plane (IP). The partial beam paths are superposed in the image plane (IP). At least two partial beams which are superposed in the same point in the image plane (IP) were reflected by different mirror segments of the same mirror segment arrangement.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: August 1, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hartmut Enkisch, Stephan Muellender, Hans-Juergen Mann, Rolf Freimann
  • Publication number: 20170176741
    Abstract: A mirror element, in particular for a microlithographic projection exposure apparatus. According to one aspect, the mirror element includes a substrate (111, 112, 113, 114, 115, 211, 212, 213, 311a-311m, 411, 412, 413) and a layer stack (121, 122, 123, 124, 125, 221, 222, 223, 321a-321m, 421, 422, 423) on the substrate. The layer stack has at least one reflection layer system, wherein a curvature of the mirror element is generated on the basis of a setpoint curvature for a predetermined operating temperature by a non-vanishing bending force exerted by the layer stack, wherein the generated curvature varies by no more than 10% over a temperature interval (?T) of at least 10 K.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Hartmut ENKISCH, Martin HERMANN, Christoph NOTTBOHM
  • Patent number: 9606446
    Abstract: A reflective optical element of an optical system for EUV lithography and an associated manufacturing method. The reflective optical element (20) includes a multilayer system (23, 83) for reflecting an incident electromagnetic wave having an operating wavelength in the EUV range, the reflected wave having a phase ?, and a capping layer (25, 85) made from a capping layer material. The method includes determining a dependency according to which the phase of the reflected wave varies with the thickness d of the capping layer, determining a linearity-region in the dependency in which the phase of the reflected wave varies substantially linearly with the thickness of the capping layer, and creating a thickness profile in the capping layer such that both the maximum thickness and the minimum thickness in the thickness profile are in the linearity-region.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: March 28, 2017
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Norbert Wabra, Boris Bittner, Martin Von Hodenberg, Hartmut Enkisch, Stephan Muellender, Olaf Conradi
  • Patent number: 9568845
    Abstract: A mirror including a substrate and a reflective coating that includes a first group of layers and a second group of layers arranged between the substrate and the first group of layers. Both the first and second groups of layers include a plurality of alternating first material layers and second material layers, arranged one above another. The refractive index of the first material for radiation in the range of 5-30 nm is greater than the refractive index of the second material in that wavelength range. The first group of layers is configured to have a number of layers that is greater than 20, such that, upon irradiation with radiation having a wavelength in the range of 5-30 nm, less than 20% of the radiation reaches the second group of layers, which has a layer thickness variation for correcting the surface form of the mirror.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: February 14, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Martin Rocktaeschel, Hartmut Enkisch, Franz-Josef Stickel, Oliver Natt, Hans-Juergen Mann, Sascha Migura
  • Publication number: 20160377984
    Abstract: A mirror, in particular for a microlithographic projection exposure apparatus has an optically effective surface, wherein the mirror has a reflectivity of at least 0.5 for electromagnetic radiation which has a prescribed working wavelength and impinges on the optically effective surface at an angle of incidence based on the respective surface normal of at least 65°, wherein the mirror has at least one layer (160, 170, 320) which comprises a compound of an element of the second period and an element of the 4d transition group, wherein the mirror has a protective layer (430, 530, 630, 730) arranged on top in the direction of the optically effective surface, wherein the material of the layer (420, 510, 620, 705) arranged in each case underneath the protective layer in the direction of the optically effective surface has a lower absorption than the material of the protective layer (430, 530, 630, 730).
    Type: Application
    Filed: September 13, 2016
    Publication date: December 29, 2016
    Inventor: Hartmut ENKISCH
  • Publication number: 20160342093
    Abstract: A method for producing a mirror element, in particular for a microlithographic projection exposure apparatus includes: providing a substrate (101, 102, 103, 104, 201, 202, 301, 302, 401, 402, 501, 502, 801, 901, 951, 961); and forming a layer stack (111, 112, 113, 114, 211, 212, 311, 312, 411, 412, 511, 512) on the substrate, wherein the layer stack is formed so that a setpoint curvature of the mirror element for a predetermined operating temperature is generated by a bending force exerted by the layer stack, wherein the substrate has a curvature deviating from the setpoint curvature of the mirror element prior to the formation of the layer stack, and wherein the bending force exerted by the layer stack is at least partly generated by virtue of a post-treatment for changing the layer tension of the layer stack.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 24, 2016
    Inventors: Hartmut ENKISCH, Peter HUBER, Sebastian STROBEL
  • Publication number: 20160266499
    Abstract: A reflective optical element (50) having a substrate (52) and a multilayer system (51) that has a plurality of partial stacks (53), each with a first layer (54) of a first material and a second layer (55) of a second material. The first material and the second material differ from one another in refractive index at an operating wavelength of the optical element. Each of the partial stacks has a thickness (Di) and a layer thickness ratio (?i), wherein the layer thickness ratio is the quotient of the thickness of the respective first layer and the partial stack thickness (Di). In a first section of the multilayer system, for at least one of the two variables of partial stack thickness (Di) and layer thickness ratio (?i), the mean square deviation from the respective mean values therefor is at least 10% less than in a second section of the multilayer system.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Inventors: Hartmut ENKISCH, Hans-Jochen PAUL, Thomas SCHICKETANZ, Oliver DIER, Joern WEBER, Christian GRASSE, Ralf WINTER, Sebastian STROBEL
  • Publication number: 20160195820
    Abstract: An illumination optical unit for microlithography illuminates an object field with illumination light. The unit includes a first facet mirror that has a plurality of first facets, and a second facet mirror that has a plurality of second facets. The unit has facet pairs which include respectively a facet of the first facet mirror and a facet of the second facet mirror which predefine a plurality of illumination channels for illuminating the object field. At least some of the illumination channels have in each case an assigned polarization element for predefining an individual polarization state of the illumination light guided in the respective illumination channel.
    Type: Application
    Filed: February 18, 2016
    Publication date: July 7, 2016
    Inventors: Damian Fiolka, Michael Totzeck, Hartmut Enkisch, Stephan Muellender
  • Publication number: 20160195817
    Abstract: The invention concerns a projection objective of a microlithographic projection exposure apparatus designed for EUV, for imaging an object plane illuminated in operation of the projection exposure apparatus into an image plane. The projection objective has at least one mirror segment arrangement comprising a plurality of separate mirror segments. Associated with the mirror segments of the same mirror segment arrangement are partial beam paths which are different from each other and which respectively provide for imaging of the object plane (OP) into the image plane (IP). The partial beam paths are superposed in the image plane (IP). At least two partial beams which are superposed in the same point in the image plane (IP) were reflected by different mirror segments of the same mirror segment arrangement.
    Type: Application
    Filed: March 15, 2016
    Publication date: July 7, 2016
    Inventors: Hartmut Enkisch, Stephan Muellender, Hans-Juergen Mann, Rolf Freimann
  • Patent number: 9341958
    Abstract: A deflection mirror (1, 501, etc.) for a microlithography projection exposure apparatus for illuminating an object field in an object plane of the projection exposure apparatus (1067) using the deflection mirror with grazing incidence. This deflection mirror has a substrate (3, 503, etc.) and at least one layer system (5, 505, etc.), and during operation light impinges on said mirror at a multiplicity of angles of incidence, wherein the layer system is designed such that, for light having a wavelength of less than 30 nm, for an angle of incidence of between 55° and 70°, the variation of the reflectivity is less than 20%, in particular less than 12%.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: May 17, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hartmut Enkisch, Stephan Muellender, Martin Endres
  • Patent number: 9304405
    Abstract: An illumination optical unit for microlithography illuminates an object field with illumination light. The unit includes a first facet mirror that has a plurality of first facets, and a second facet mirror that has a plurality of second facets. The unit has facet pairs which include respectively a facet of the first facet mirror and a facet of the second facet mirror which predefine a plurality of illumination channels for illuminating the object field. At least some of the illumination channels have in each case an assigned polarization element for predefining an individual polarization state of the illumination light guided in the respective illumination channel.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: April 5, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Damian Fiolka, Michael Totzeck, Hartmut Enkisch, Stephan Muellender
  • Patent number: 9285515
    Abstract: An imaging optical system has a plurality of mirrors. These image an object field in an object plane into an image field in an image plane. In the imaging optical system, the ratio of a maximum angle of incidence of imaging light) on reflection surfaces of the mirrors and an image-side numerical aperture of the imaging optical system is less than 33.8°. This can result in an imaging optical system which offers good conditions for a reflective coating of the mirror, with which a low reflection loss can be achieved for imaging light when passing through the imaging optical system, in particular even at wavelengths in the EUV range of less than 10 nm.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: March 15, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Wilheim Ulrich, Stephan Muellender, Hartmut Enkisch
  • Publication number: 20160048083
    Abstract: An illumination system for an optical arrangement such as an EUV lithography apparatus, having: at least one optical element which has at least one optical surface, on which a coating which reflects illumination radiation is applied, and an actuator device aligning the optical surface in at least two angular positions in the radiation path. The coating either has a thickness (dOPT1) at which a mean value (½ (R1+R2)) formed from a thickness-dependent reflectivity (R1, R2) of the coating at the at least two angular positions is maximized or has a thickness (dOPT2) at which a maximum change (max(?R1/R1, ?R2/R2)) in the reflectivity (R1, R2) caused by a thickness tolerance of the coating is minimized at the respective angular positions or else the reflecting coating has a thickness (dO2) at which the reflectivity (R1, R2) of the coating has the same magnitude in the at least two angular positions.
    Type: Application
    Filed: August 28, 2015
    Publication date: February 18, 2016
    Inventors: Martin ENDRES, Hartmut ENKISCH, Stig BIELING
  • Publication number: 20150316851
    Abstract: A reflective optical element of an optical system for EUV lithography and an associated manufacturing method. The reflective optical element (20) includes a multilayer system (23, 83) for reflecting an incident electromagnetic wave having an operating wavelength in the EUV range, the reflected wave having a phase ?, and a capping layer (25, 85) made from a capping layer material. The method includes determining a dependency according to which the phase of the reflected wave varies with the thickness d of the capping layer, determining a linearity-region in the dependency in which the phase of the reflected wave varies substantially linearly with the thickness of the capping layer, and creating a thickness profile in the capping layer such that both the maximum thickness and the minimum thickness in the thickness profile are in the linearity-region.
    Type: Application
    Filed: June 5, 2015
    Publication date: November 5, 2015
    Inventors: Norbert WABRA, Boris BITTNER, Martin VON HODENBERG, Hartmut ENKISCH, Stephan MUELLENDER, Olaf CONRADI
  • Publication number: 20140132941
    Abstract: An imaging optical system has a plurality of mirrors. These image an object field in an object plane into an image field in an image plane. In the imaging optical system, the ratio of a maximum angle of incidence of imaging light) on reflection surfaces of the mirrors and an image-side numerical aperture of the imaging optical system is less than 33.8°. This can result in an imaging optical system which offers good conditions for a reflective coating of the mirror, with which a low reflection loss can be achieved for imaging light when passing through the imaging optical system, in particular even at wavelengths in the EUV range of less than 10 nm.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Wilheim Ulrich, Stephan Muellender, Hartmut Enkisch
  • Publication number: 20140022525
    Abstract: A deflection mirror (1, 501, etc.) for a microlithography projection exposure apparatus for illuminating an object field in an object plane of the projection exposure apparatus (1067) using the deflection mirror with grazing incidence. This deflection mirror has a substrate (3, 503, etc.) and at least one layer system (5, 505, etc.), and during operation light impinges on said mirror at a multiplicity of angles of incidence, wherein the layer system is designed such that, for light having a wavelength of less than 30 nm, for an angle of incidence of between 55° and 70°, the variation of the reflectivity is less than 20%, in particular less than 12%.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 23, 2014
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Hartmut ENKISCH, Stephan MUELLENDER, Martin ENDRES
  • Patent number: 8605255
    Abstract: An imaging optical system has a plurality of mirrors. These image an object field in an object plane into an image field in an image plane. In the imaging optical system, the ratio of a maximum angle of incidence of imaging light) on reflection surfaces of the mirrors and an image-side numerical aperture of the imaging optical system is less than 33.8°. This can result in an imaging optical system which offers good conditions for a reflective coating of the mirror, with which a low reflection loss can be achieved for imaging light when passing through the imaging optical system, in particular even at wavelengths in the EUV range of less than 10 nm.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: December 10, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Wilhelm Ulrich, Stephan Muellender, Hartmut Enkisch
  • Publication number: 20130242278
    Abstract: The invention concerns a projection objective of a microlithographic projection exposure apparatus designed for EUV, for imaging an object plane illuminated in operation of the projection exposure apparatus into an image plane, wherein the projection objective has at least one mirror segment arrangement (160, 260, 280, 310, 410, 500) comprising a plurality of separate mirror segments (161-163; 261-266, 281-284; 311, 312; 411, 412; 510-540); and wherein associated with the mirror segments of the same mirror segment arrangement are partial beam paths which are different from each other and which respectively provide for imaging of the object plane (OP) into the image plane (IP), wherein said partial beam paths are superposed in the image plane (IP) and wherein at least two partial beams which are superposed in the same point in the image plane (IP) were reflected by different mirror segments of the same mirror segment arrangement.
    Type: Application
    Filed: April 8, 2013
    Publication date: September 19, 2013
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Hartmut Enkisch, Stephan Muellender, Hans-Juergen Mann, Rolf Freimann
  • Patent number: 8457281
    Abstract: A method for producing a multilayer coating (17) for reflecting radiation in the soft X-ray or EUV wavelength range on an optical element (8, 9) operated at an operating temperature (TOP) of 30° C. or more, including: determining an optical design for the multilayer coating (17) which defines an optical desired layer thickness (nOP dOP) of the layers (17.1, 17.2) of the multilayer coating (17) at the operating temperature (TOP), and applying the layers (17.1, 17.2) of the multilayer coating (17) with an optical actual layer thickness (nB dB) chosen such that a layer thickness change(nOP dOP?nB dB) caused by thermal expansion of the layers (17.1, 17.2) between the coating temperature (TB) and the operating temperature (TOP) is compensated for. Also provided are an associated optical element (8, 9) and a projection exposure apparatus having at least one such optical element (8, 9).
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 4, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hartmut Enkisch, Stephan Muellender, Martin Endres