Patents by Inventor Harvey W. Ko

Harvey W. Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11298055
    Abstract: A noninvasive glucose monitoring device includes a drive-and-sense coil and an electronic oscillator with multiple circuits electrically connected to the coil. The drive-and-sense coil may be embedded in either a finger clip or a finger push button. The device measures bioimpedance with a magnetic field coil outside a user's finger. The coil measures blood and glucose electrical conductivity without penetrating the finger. No blood extraction is required. A noninvasive method of measuring glucose in-vivo includes placing the drive-and-sense coil next to a subject's finger and inducing magnetic fields in blood in the subject's finger. A change in mutual impedance between the drive-and-sense coil and the blood is measured at predetermined frequencies and glucose content is calculated from the change in mutual impedance according to a predetermined correlation for each frequency.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: April 12, 2022
    Inventor: Harvey W. Ko
  • Publication number: 20220015669
    Abstract: A noninvasive glucose monitoring device includes a drive-and-sense coil and an electronic oscillator with multiple circuits electrically connected to the coil. The drive-and-sense coil may be embedded in either a finger clip or a finger push button. The device measures bioimpedance with a magnetic field coil outside a user's finger. The coil measures blood and glucose electrical conductivity without penetrating the finger. No blood extraction is required. A noninvasive method of measuring glucose in-vivo includes placing the drive-and-sense coil next to a subject's finger and inducing magnetic fields in blood in the subject's finger. A change in mutual impedance between the drive-and-sense coil and the blood is measured at predetermined frequencies and glucose content is calculated from the change in mutual impedance according to a predetermined correlation for each frequency.
    Type: Application
    Filed: July 14, 2021
    Publication date: January 20, 2022
    Inventor: Harvey W. Ko
  • Patent number: 9370309
    Abstract: A magnetoencephalogram (MEG) system is provided for use with a head. The MEG system includes a shell, and three three-axis gradiometers and a computing portion. Each three-axis gradiometer detects a magnetic field vector from a magnetic dipole in the head and generates a respective detected signal based on the respective magnetic field vector. Each three-axis gradiometer is disposed at a respective position of the shell. The computing portion determines a location of the magnetic dipole based on the first detected signal, the second detected signal and the third detected signal.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 21, 2016
    Assignee: The Johns Hopkins University
    Inventors: Harvey W. Ko, Ibolja Cernak, Michael P. McLoughlin
  • Publication number: 20140005518
    Abstract: A magnetoencephalogram (MEG) system is provided for use with a head. The MEG system includes a shell, and three three-axis gradiometers and a computing portion. Each three-axis gradiometer detects a magnetic field vector from a magnetic dipole in the head and generates a respective detected signal based on the respective magnetic field vector. Each three-axis gradiometer is disposed at a respective position of the shell. The computing portion determines a location of the magnetic dipole based on the first detected signal, the second detected signal and the third detected signal.
    Type: Application
    Filed: November 18, 2011
    Publication date: January 2, 2014
    Applicant: The John Hopkins University
    Inventors: Harvey W. Ko, Ibolja Cernak, Michael P. McLoughlin
  • Publication number: 20110049390
    Abstract: A method and apparatus for evaluating a bioaerosol sample is provided which includes detecting frequency and/or time resolution factors that allow discriminate between a plurality of signals emitted by the bioaerosol to selectively detect biological materials contained in the bioaerosol sample from materials of non-biological origin and potentially associated with a pathogenic bioaerosol.
    Type: Application
    Filed: November 4, 2010
    Publication date: March 3, 2011
    Inventors: George M. Murray, Cheryl S. Schein, David R. Kohler, Jennifer L. Sample, Jennifer A. Nix, Protagoras N. Cutchis, Adam K. Arabian, Harvey W. Ko, Micah A. Carlson, Michael P. McLoughlin
  • Patent number: 7830515
    Abstract: A method and apparatus for evaluating a bioaerosol sample is provided which includes detecting frequency and/or time resolution factors that allow discriminate between a plurality of signals emitted by the bioaerosol to selectively detect biological materials contained in the bioaerosol sample from materials of non-biological origin and potentially associated with a pathogenic bioaerosol.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: November 9, 2010
    Assignee: The Johns Hopkins University
    Inventors: George M. Murray, Cheryl S. Schein, David R. Kohler, Jennifer L. Sample, Jennifer A. Nix, Protagoras N. Cutchis, Adam K. Arabian, Harvey W. Ko, Micah A. Carlson, Michael P. McLoughlin
  • Patent number: 7494769
    Abstract: A method and apparatus for evaluating a bioaerosol sample is provided which includes detecting frequency and/or time resolution factors that allow discriminate between a plurality of signals emitted by the bioaerosol to selectively detect biological materials contained in the bioaerosol sample from materials of non-biological origin and potentially associated with a pathogenic bioaerosol.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: February 24, 2009
    Assignee: The Johns Hopkins University
    Inventors: George M. Murray, Cheryl S. Schein, David R. Kohler, Jennifer L. Sample, Jennifer A. Nix, Protagoras N. Cutchis, Adam K. Arabian, Harvey W. Ko, Micah A. Carlson, Michael P. McLoughlin
  • Publication number: 20080254502
    Abstract: A method and apparatus for evaluating a bioaerosol sample is provided which includes detecting frequency and/or time resolution factors that allow discriminate between a plurality of signals emitted by the bioaerosol to selectively detect biological materials contained in the bioaerosol sample from materials of non-biological origin and potentially associated with a pathogenic bioaerosol.
    Type: Application
    Filed: June 18, 2008
    Publication date: October 16, 2008
    Inventors: George M. Murray, Cheryl S. Schein, David R. Kohler, Jennifer L. Sample, Jennifer A. Nix, Protagoras N. Cutchis, Adam K. Arabian, Harvey W. Ko, Micah A. Carlson, Michael P. McLoughlin
  • Patent number: 7283868
    Abstract: An electromagnetic bioimpedance measurement apparatus uses an alternating magnetic field to induce electrical eddy currents in biological tissue. The eddy currents produce secondary magnetic fields that have the effect of changing the mutual inductance between the tissue and the coil that applied to the initial magnetic field. The amplitude of the resultant voltage, as measured by the same coil or a different receiver coil, is proportional to the conductivity of the tissue. A simple, marginally stable oscillator circuit is used to generate the current into the coil. Nearfield holographic signal processing is then used for holographic image formation. Bioimpedance is used to distinguish between normal tissue and cancerous tissue, especially cancerous prostate tissue. An invasive embodiment includes driven needle electrodes that are inserted into the body segment to be tested. Noninvasive embodiments include single or multiple coils arranged on a probe shaft.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: October 16, 2007
    Assignee: The Johns Hopkins University
    Inventors: Harvey W. Ko, Dexter G. Smith
  • Patent number: 7126148
    Abstract: A system for detecting neutron radiation. A liquid cocktail mixture comprised of a neutron absorber and a scintillator is housed in a TeflonĀ® tube having a mirror at one end of the tube and a windowed portal at the other end of the tube. Neutrons that penetrate the tube react with the neutron absorber producing ionization that excites a scintillator to produce photons. A photo-multiplier tube is coupled with the windowed portal for receiving photons and converting the photons to electrical signals. A processing device is coupled to the photo-multiplier output for receiving and analyzing the electrical signals so as to provide a measurement pertaining to the presence and relative strength of neutron radiation. The tube can be adapted to function as a portable survey instrument. Alternatively, the tube can be stretched to cover large apertured areas. In such implementations a wavelength shifter is employed to convert light emitted to another wavelength giving a multiplier effect necessary for long light guides.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: October 24, 2006
    Assignee: The Johns Hopkins University
    Inventors: George M. Murray, Harvey W. Ko, Glen Southard
  • Patent number: 6969605
    Abstract: A hand held, self-contained, automatic, low power and rapid sensor platform for detecting and quantifying a plurality of analytes. A sample solution potentially containing an unknown amount of an analyte is passed through an affinity column which contains antibodies to which the analyte binds thereby extracting the analyte. The affinity column is then rinsed to remove any other chemicals that may fluoresce. The rinsed affinity column is then eluted with a known volume of elution fluid causing the analyte to release from the antibody and dissolve in the fluid (eluant). The eluant is then placed in the quartz cuvette of a fluorometer. The analyte suspended in the eluant fluoresces at a waveband which is different than that of the light source that excites it. The amount of fluorescence is measured and the level of analyte determined.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: November 29, 2005
    Assignee: The Johns Hopkins University
    Inventors: Charles W. Anderson, C. Brent Bargeron, Richard C. Benson, Micah A. Carlson, Allan B. Fraser, John D. Groopman, Harvey W. Ko, David R. Kohler, Terry E. Phillips, Paul T. Strickland
  • Patent number: 6806465
    Abstract: A field portable mass spectrometer system comprising a sample collector and a sample transporter. The sample transporter interfaces with the sample collector to receive sample deposits thereon. The system further comprises a time of flight (TOF) mass spectrometer. The time of flight mass spectrometer has a sealable opening that receives the sample transported via the sample transporter in an extraction region of the mass spectrometer. The system further comprises a control unit that processes a time series output by the mass spectrometer for a received sample and identifies one or more agents contained in the sample.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: October 19, 2004
    Assignee: The Johns Hopkins University
    Inventors: Charles W. Anderson, Peter F. Scholl, Ronald G. Chappell, Wayne A. Bryden, Harvey W. Ko, Scott A. Ecelberger
  • Patent number: 6765527
    Abstract: A harmonic radar nonlinear junction detector system for detecting concealed weapons, electronics, and other man-made objects utilizing state-of-the art wireless technology, circuit fabrication, signal synthesis, and computer processing techniques to detect and characterize man-made objects possessing nonlinear junctions. The system transmits a pair of low power waveforms and a receiver within the system is coherently tuned to harmonics of the transmitted frequencies of the waveforms to detect man-made metal objects and electronics that contain non-linear junctions. The receiver is also capable of receiving inter-modulation products reflected from the man-made objects that are a result of using two incident signals. The system uses two signal sources generating user-definable waveforms of variable frequencies in order to provide enhanced discrimination and target identification abilities via the processing of returned inter-modulation products.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: July 20, 2004
    Assignee: The Johns Hopkins University
    Inventors: Daniel G. Jablonski, Harvey W. Ko, Douglas A. Oursler, Dexter G. Smith, David M. White
  • Publication number: 20040051048
    Abstract: A system for detecting neutron radiation. A liquid cocktail mixture comprised of a neutron absorber and a scintillator is housed in a Teflon® tube having a mirror at one end of the tube and a windowed portal at the other end of the tube. Neutrons that penetrate the tube react with the neutron absorber producing ionization that excites a scintillator to produce photons. A photo-multiplier tube is coupled with the windowed portal for receiving photons and converting the photons to electrical signals. A processing device is coupled to the photo-multiplier output for receiving and analyzing the electrical signals so as to provide a measurement pertaining to the presence and relative strength of neutron radiation. The tube can be adapted to function as a portable survey instrument. Alternatively, the tube can be stretched to cover large apertured areas.
    Type: Application
    Filed: July 17, 2003
    Publication date: March 18, 2004
    Inventors: George M. Murray, Harvey W. Ko, Glen Southard
  • Publication number: 20030179126
    Abstract: A harmonic radar nonlinear junction detector system for detecting concealed weapons, electronics, and other man-made objects utilizing state-of-the art wireless technology, circuit fabrication, signal synthesis, and computer processing techniques to detect and characterize man-made objects possessing nonlinear junctions. The system transmits a pair of low power waveforms and a receiver within the system is coherently tuned to harmonics of the transmitted frequencies of the waveforms to detect man-made metal objects and electronics that contain non-linear junctions. The receiver is also capable of receiving inter-modulation products reflected from the man-made objects that are a result of using two incident signals. The system uses two signal sources generating user-definable waveforms of variable frequencies in order to provide enhanced discrimination and target identification abilities via the processing of returned inter-modulation products.
    Type: Application
    Filed: January 31, 2002
    Publication date: September 25, 2003
    Inventors: Daniel G. Jablonski, Harvey W Ko, Douglas A Oursler, Dexter G Smith, David M White
  • Patent number: 6600320
    Abstract: A unique time-domain electromagnetic system and data processing technique which, using low frequency electromagnetic fields, can localize, in three-dimensions, the position of buried metallic objects is disclosed. The measurement system uses time-domain electromagnetic techniques on a scanning frame similar to a X-Y plotter. The system collects magnetic data over a large area above the buried object. The spatial information of the field detected on the ground is then processed with an unique ‘nearfield holographic’ data processing method to reconstruct the field image of the buried object.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: July 29, 2003
    Assignee: The Johns Hopkins University
    Inventors: Yanping Guo, Harvey W. Ko, Carl V. Nelson, David M. White
  • Publication number: 20030055358
    Abstract: An electromagnetic bioimpedance measurement apparatus uses an alternating magnetic field to induce electrical eddy currents in biological tissue. The eddy currents produce secondary magnetic fields that have the effect of changing the mutual inductance between the tissue and the coil that applied to the initial magnetic field. The amplitude of the resultant voltage, as measured by the same coil or a different receiver coil, is proportional to the conductivity of the tissue. A simple, marginally stable oscillator circuit is used to generate the current into the coil. Nearfield holographic signal processing is then used for holographic image formation. Bioimpedance is used to distinguish between normal tissue and cancerous tissue, especially cancerous prostate tissue. An invasive embodiment includes driven needle electrodes that are inserted into the body segment to be tested. Noninvasive embodiments include single or multiple coils arranged on a probe shaft.
    Type: Application
    Filed: August 22, 2002
    Publication date: March 20, 2003
    Inventors: Harvey W. Ko, Dexter G Smith
  • Publication number: 20030020011
    Abstract: A field portable mass spectrometer system comprising a sample collector and a sample transporter. The sample transporter interfaces with the sample collector to receive sample deposits thereon. The system further comprises a time of flight (TOF) mass spectrometer. The time of flight mass spectrometer has a sealable opening that receives the sample transported via the sample transporter in an extraction region of the mass spectrometer. The system further comprises a control unit that processes a time series output by the mass spectrometer for a received sample and identifies one or more agents contained in the sample.
    Type: Application
    Filed: January 15, 2002
    Publication date: January 30, 2003
    Inventors: Charles W. Anderson, Peter F. Scholl, Ronald G. Chappell, Wayne A. Bryden, Harvey W. Ko, Scott A. Ecelberger
  • Publication number: 20030006899
    Abstract: Disclosed is a method for detecting unwanted dissemination of acrosolized agents into an HVAC system in a building by detecting the sound of the dissemination at the time it occurs. To be able to distinguish the sound of the dissemination event from the ambient background noise of the HVAC system, sound extraction techniques, e.g., high pass filtering and an adaptive variance estimator, are utilized which can detect the event's noise from within the ambient background noise of the system. A microphone continually monitors background sound levels and senses the additional sound resulting from the activation of the aerosol delivery system, which has a unique sound “signature”. Once an event is detected, defensive actions, e.g., activating additional sensors, closing all air vents, and shutting off the HVAC system, can be taken.
    Type: Application
    Filed: January 15, 2002
    Publication date: January 9, 2003
    Inventors: Amir-Homayoon Najmi, Dexter G. Smith, Michael P. McLoughlin, Harvey W. Ko
  • Publication number: 20020030492
    Abstract: A unique time-domain electromagnetic system and data processing technique which, using low frequency electromagnetic fields, can localize, in three-dimensions, the position of buried metallic objects is disclosed. The measurement system uses time-domain electromagnetic techniques on a scanning frame similar to a X-Y plotter. The system collects magnetic data over a large area above the buried object. The spatial information of the field detected on the ground is then processed with an unique ‘nearfield holographic’ data processing method to reconstruct the field image of the buried object.
    Type: Application
    Filed: August 13, 2001
    Publication date: March 14, 2002
    Inventors: Yanping Guo, Harvey W. Ko, Carl V. Nelson, David M. White