Patents by Inventor Hauke Esemann

Hauke Esemann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142683
    Abstract: The present disclosure relates to structured protective windows that have high transmission efficiency and can isolate light between different sections of the window. The structured protective windows are less prone to glass breakage compared to conventional protective windows that are typically used to protect and isolate light transmitting and light receiving components in LiDAR exterior automotive applications.
    Type: Application
    Filed: March 24, 2022
    Publication date: May 2, 2024
    Applicants: SCHOTT Corporation, SCHOTT AG
    Inventors: Oliver Sohr, Sebastian Leugner, Kevin Tabor, Elisabeth Han, Hauke Esemann
  • Patent number: 11931862
    Abstract: Thin glass elements with improved edge strength are provided—from a sheet glass element that has two opposite parallel faces and an edge connecting the faces. The sheet glass element has a thickness of at most 700 ?m. At least a portion of the edge is defined by an edge surface portion that is convexly curved, so that at least one of the faces merges into the edge surface portion, wherein a curved arc of the edge surface portion has a length that is at least 1/30 of the thickness of the sheet glass element. In the region of the convex curvature, the edge surface portion has indentations in the form of furrows.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: March 19, 2024
    Assignee: SCHOTT AG
    Inventors: Matthias Jotz, Markus Heiss-Chouquet, Hauke Esemann, Clemens Ottermann, Claudia Stolz
  • Patent number: 11534754
    Abstract: A method for producing a cavity in a substrate composed of hard brittle material is provided. A laser beam of an ultrashort pulse laser is directed a side surface of the substrate and is concentrated by a focusing optical unit to form an elongated focus in the substrate. Incident energy of the laser beam produces a filament-shaped flaw in a volume of the substrate. The filament-shaped flaw extends into the volume to a predetermined depth and does not pass through the substrate. To produce the filament-shaped flaw, the ultrashort pulse laser radiates in a pulse or a pulse packet having at least two successive laser pulses. After at least two filament-shaped flaws are introduced, the substrate is exposed to an etching medium which removes material of the substrate and widens the at least two filament-shaped flaws to form filaments. At least two filaments are connected to form a cavity.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: December 27, 2022
    Assignee: Schott AG
    Inventors: Andreas Ortner, Andreas Roters, Hauke Esemann, Markus Heiss-Chouquet, Fabian Wagner, Laura Brueckbauer, Stephanie Mangold, Vanessa Hiller
  • Publication number: 20220401953
    Abstract: A method for producing a cavity in a substrate composed of hard brittle material is provided. A laser beam of an ultrashort pulse laser is directed a side surface of the substrate and is concentrated by a focusing optical unit to form an elongated focus in the substrate. Incident energy of the laser beam produces a filament-shaped flaw in a volume of the substrate. The filament-shaped flaw extends into the volume to a predetermined depth and does not pass through the substrate. To produce the filament-shaped flaw, the ultrashort pulse laser radiates in a pulse or a pulse packet having at least two successive laser pulses. After at least two filament-shaped flaws are introduced, the substrate is exposed to an etching medium which removes material of the substrate and widens the at least two filament-shaped flaws to form filaments. At least two filaments are connected to form a cavity.
    Type: Application
    Filed: August 23, 2022
    Publication date: December 22, 2022
    Applicant: Schott AG
    Inventors: Andreas Ortner, Andreas Roters, Hauke Esemann, Markus Heiss-Chouquet, Fabian Wagner, Laura Brueckbauer, Stephanie Mangold, Vanessa Hiller
  • Patent number: 10751831
    Abstract: A feed-through component for a conductor feed-through which passes through a part of a housing, for example a battery housing, is embedded in a glass or glass ceramic material and has at least one conductor, for example an essentially pin-shaped conductor, and a head part. The surface, in particular the cross-sectional surface, of the head part is greater than the surface, in particular the cross-sectional surface, of the conductor, for example of the essentially pin-shaped conductor. The head part is embodied such that is can be joined to an electrode-connecting component, for example an electrode-connecting part, which may be made of copper, a copper alloy CuSiC, an aluminum alloy AlSiC or aluminum, with a mechanically stable and non-detachable connection.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: August 25, 2020
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Patent number: 10654745
    Abstract: The present disclosure relates to a bonding glass which has improved water resistance and has a coefficient of thermal expansion ?(25-300) of from 14·10?6K?1 to 17·10?6K?1, comprising, in mol % on an oxide basis, 5-7 of B2O3, 10-14 of Al2O3, 36-43 of P2O5, 15-22 of Na2O, 12.5-20 of K2O, 2-6 of Bi2O3 and >0-6 of R oxide, where R oxide is an oxide selected from the group consisting of MnO2 and SiO2 and SnO2 and Ta2O5 and Nb2O5 and Fe2O3 and GeO2 and CaO. The bonding glass is free of PbO except for, at most, impurities. The bonding glass may have a glass transition temperature Tg of from 390° C. to 430° C. The present disclosure also relates to uses of this bonding glass.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: May 19, 2020
    Assignee: Schott AG
    Inventors: Ina Mitra, Miriam Kunze, Linda Johanna Bartelt, Sabrina Wimmer, Frank Kroll, Hauke Esemann, Bernd Hoppe, Jörg Witte
  • Patent number: 10532946
    Abstract: A lightweight composite pane is provided that includes a mineral glass or glass-ceramic pane and an organic layer. The weight per unit area of the lightweight composite pane is in the range from 0.5 kg/m2 to 5.5 kg/m2, the ratio of the thickness of the mineral glass pane to the thickness of the organic layer is 1:0.01 to 1:1, and the thickness of the organic layer is less than or equal to 500 ?m. The lightweight composite pane meets the thermal safety requirements of aerospace authorities and has a “Total Heat Release,” measured in compliance with JAR/FAR/CS 25, App. F, Part IV & AITM 2.0006, of less than 65 kW×min/m2 and a flame time, after removal of the flame in the “Vertical Bunsen Burner Test”, measured in compliance with FAR/JAR/CS 25, App. F, Part 1 & AITM 2.0002A, is less than 15 seconds.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: January 14, 2020
    Assignee: SCHOTT AG
    Inventors: Jens Meiss, Clemens Ottermann, Hauke Esemann, Joerg Hinrich Fechner, Markus Heiss-Chouquet
  • Publication number: 20190329252
    Abstract: A method for the production of microfluidic cells using a disc-shaped glass element is provided. The disc-shaped glass element has a thickness of at most 700 micrometers is structured in such a way that it has at least one opening. The opening connects the two opposite-lying, parallel side faces of the glass element. The side faces are attached to a glass part so that the opening is sealed by the two glass parts to form a microfluidic cell having a cavity enclosed therein. The cavity is suitable for the conveyance of fluids. The attachment of the glass element to at least one of the two glass parts is produced by an adhesive that is applied onto the side face of the glass element. During application of the adhesive, the at least one opening in the glass element is left free of adhesive.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 31, 2019
    Applicant: SCHOTT AG
    Inventors: Hauke Esemann, Stephanie Mangold, Andreas Roters, Andreas Ortner, Markus Heiss-Chouquet, Fabian Wagner, Vanessa Hiller, Laura Brueckbauer
  • Publication number: 20190329251
    Abstract: A method for producing a cavity in a substrate composed of hard brittle material is provided. A laser beam of an ultrashort pulse laser is directed a side surface of the substrate and is concentrated by a focusing optical unit to form an elongated focus in the substrate. Incident energy of the laser beam produces a filament-shaped flaw in a volume of the substrate. The filament-shaped flaw extends into the volume to a predetermined depth and does not pass through the substrate. To produce the filament-shaped flaw, the ultrashort pulse laser radiates in a pulse or a pulse packet having at least two successive laser pulses. After at least two filament-shaped flaws are introduced, the substrate is exposed to an etching medium which removes material of the substrate and widens the at least two filament-shaped flaws to form filaments. At least two filaments are connected to form a cavity.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 31, 2019
    Applicant: Schott AG
    Inventors: Andreas Ortner, Andreas Roters, Hauke Esemann, Markus Heiss-Chouquet, Fabian Wagner, Laura Brueckbauer, Stephanie Mangold, Vanessa Hiller
  • Publication number: 20190314948
    Abstract: Thin glass elements with improved edge strength are provided—from a sheet glass element that has two opposite parallel faces and an edge connecting the faces. The sheet glass element has a thickness of at most 700 ?m. At least a portion of the edge is defined by an edge surface portion that is convexly curved, so that at least one of the faces merges into the edge surface portion, wherein a curved arc of the edge surface portion has a length that is at least 1/30 of the thickness of the sheet glass element. In the region of the convex curvature, the edge surface portion has indentations in the form of furrows.
    Type: Application
    Filed: May 24, 2019
    Publication date: October 17, 2019
    Applicant: SCHOTT AG
    Inventors: Matthias Jotz, Markus Heiss-Chouquet, Hauke Esemann, Clemens Ottermann, Claudia Stolz
  • Patent number: 10343249
    Abstract: Thin glass elements with improved edge strength are provided—from a sheet glass element that has two opposite parallel faces and an edge connecting the faces. The sheet glass element has a thickness of at most 700 ?m. At least a portion of the edge is defined by an edge surface portion that is convexly curved, so that at least one of the faces merges into the edge surface portion, wherein a curved arc of the edge surface portion has a length that is at least 1/30 of the thickness of the sheet glass element. In the region of the convex curvature, the edge surface portion has indentations in the form of furrows.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: July 9, 2019
    Assignee: Schott AG
    Inventors: Matthias Jotz, Markus Heiss-Chouquet, Hauke Esemann, Clemens Ottermann, Claudia Stolz
  • Publication number: 20190084871
    Abstract: The present disclosure relates to a bonding glass which has improved water resistance and has a coefficient of thermal expansion ?(25-300) of from 14·10?6K?1 to 17·10?6K?1, comprising, in mol % on an oxide basis, 5-7 of B2O3, 10-14 of Al2O3, 36-43 of P2O5, 15-22 of Na2O, 12.5-20 of K2O, 2-6 of Bi2O3 and >0-6 of R oxide, where R oxide is an oxide selected from the group consisting of MnO2 and SiO2 and SnO2 and Ta2O5 and Nb2O5 and Fe2O3 and GeO2 and CaO. The bonding glass is free of PbO except for, at most, impurities. The bonding glass may have a glass transition temperature Tg of from 390° C. to 430° C. The present disclosure also relates to uses of this bonding glass.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 21, 2019
    Applicant: Schott AG
    Inventors: Ina Mitra, Miriam Kunze, Linda Johanna Bartelt, Sabrina Wimmer, Frank Kroll, Hauke Esemann, Bernd Hoppe, Jörg Witte
  • Patent number: 10224521
    Abstract: A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body and is hermetically sealed with the housing part such that the helium leakage rate is smaller than 1*10?8 mbar l/sec.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 5, 2019
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Bartelt
  • Publication number: 20180178312
    Abstract: A feed-through component for a conductor feed-through which passes through a part of a housing, for example a battery housing, is embedded in a glass or glass ceramic material and has at least one conductor, for example an essentially pin-shaped conductor, and a head part. The surface, in particular the cross-sectional surface, of the head part is greater than the surface, in particular the cross-sectional surface, of the conductor, for example of the essentially pin-shaped conductor. The head part is embodied such that is can be joined to an electrode-connecting component, for example an electrode-connecting part, which may be made of copper, a copper alloy CuSiC, an aluminum alloy AlSiC or aluminum, with a mechanically stable and non-detachable connection.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20170304980
    Abstract: Thin glass elements with improved edge strength are provided—from a sheet glass element that has two opposite parallel faces and an edge connecting the faces. The sheet glass element has a thickness of at most 700 ?m. At least a portion of the edge is defined by an edge surface portion that is convexly curved, so that at least one of the faces merges into the edge surface portion, wherein a curved arc of the edge surface portion has a length that is at least 1/30 of the thickness of the sheet glass element. In the region of the convex curvature, the edge surface portion has indentations in the form of furrows.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 26, 2017
    Applicant: SCHOTT AG
    Inventors: Matthias Jotz, Markus Heiss-Chouquet, Hauke Esemann, Clemens Ottermann, Claudia Stolz
  • Patent number: 9799860
    Abstract: A feed-through, for example a battery feed-through for a lithium-ion battery or a lithium ion accumulator, has at least one base body which has at least one opening through which at least one conductor, for example a pin-shaped conductor, embedded in a glass material is guided. The base body contains a low melting material, for example a light metal, such as aluminum, magnesium, AlSiC, an aluminum alloy, a magnesium alloy, titanium, titanium alloy or steel, in particular special steel, stainless steel or tool steel. The glass material consists of the following in mole percent: 35-50% P2O5; 0-14% Al2O3; 2-10% B2O3; 0-30% Na2O; 0-20% M2O, with M being K, Cs or Rb; 0-35% Li2O; 0-20% BaO; and 0-10% Bi2O3, the glass material being free of lead except for contaminants.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: October 24, 2017
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Patent number: 9738828
    Abstract: An optical converter for producing colored or white light from blue excitation light is provided. The converter has good scattering properties to be able to produce nearly white light from the scattered blue light components and the scattered, converted yellow light components. The optical converter includes material including one or more of a YAG ceramic, a LuAG ceramic, and a magnesium-aluminum ceramic exhibiting strong scattering.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: August 22, 2017
    Assignee: SCHOTT AG
    Inventors: Volker Hagemann, Peter Nass, Yvonne Menke, Bernd Hoppe, Wolfram Beier, Rainer Liebald, Niko Schultz, Guenter Weidmann, Hauke Esemann
  • Publication number: 20170149028
    Abstract: A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body and is hermetically sealed with the housing part such that the helium leakage rate is smaller than 1*10?8 mbar l/sec.
    Type: Application
    Filed: December 20, 2016
    Publication date: May 25, 2017
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Bartelt
  • Patent number: 9616518
    Abstract: A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 11, 2017
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20170098803
    Abstract: A feed-through, for example a battery feed-through for a lithium-ion battery or a lithium ion accumulator, has at least one base body which has at least one opening through which at least one conductor, for example a pin-shaped conductor, embedded in a glass material is guided. The base body contains a low melting material, for example a light metal, such as aluminum, magnesium, AlSiC, an aluminum alloy, a magnesium alloy, titanium, titanium alloy or steel, in particular special steel, stainless steel or tool steel. The glass material consists of the following in mole percent: 35-50% P2O5; 0-14% Al2O3; 2-10% B2O3; 0-30% Na2O; 0-20% M2O, with M being K, Cs or Rb; 0-35% Li2O; 0-20% BaO; and 0-10% Bi2O3, the glass material being free of lead except for contaminants.
    Type: Application
    Filed: December 16, 2016
    Publication date: April 6, 2017
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes