Patents by Inventor Hayato Yamashita

Hayato Yamashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8065908
    Abstract: Provided is an atomic force microscope capable of increasing the phase detection speed of a cantilever vibration. The cantilever (5) is excited and the cantilever (5) and a sample are relatively scanned. Displacement of the cantilever (5) is detected by a sensor. An oscillator (27) generates an excitation signal of the cantilever (5) and generates a reference wave signal having a frequency based on the excitation signal and a fixed phase. According to vibration of the cantilever (5), a trigger pulse generation circuit (41) generates a trigger pulse signal having a pulse position changing in accordance with the vibration of the cantilever (5). According to the reference wave signal and the trigger pulse signal, a phase signal generation circuit (43) generates a signal corresponding to the level of the reference wave signal at the pulse position as a phase signal of vibration of the cantilever (5). As the reference wave signal, a saw tooth wave is used.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: November 29, 2011
    Assignee: National University Corporation Kanazawa University
    Inventors: Takayuki Uchihashi, Toshio Ando, Hayato Yamashita
  • Patent number: 7958565
    Abstract: A driving laser unit (11) irradiates a laser beam on a cantilever (5) to cause thermal expansion deformation. A driving-laser control unit (13) performs feedback control for the cantilever (5) by controlling intensity of the laser beam on the basis of displacement of the cantilever (5) detected by a sensor (9). A thermal-response compensating circuit (35) has a constitution equivalent to an inverse transfer function of a heat transfer function of the cantilever (5) and compensates for a delay in a thermal response of the cantilever (5) to the light irradiation. Moreover, the cantilever (5) may be excited by controlling the intensity of the laser beam. By controlling light intensity, a Q value of a lever resonance system is also controlled. It is possible to increase scanning speed of an atomic force microscope.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: June 7, 2011
    Assignee: National University Corporation Kanazawa University
    Inventors: Toshio Ando, Takayuki Uchihashi, Noriyuki Kodera, Hayato Yamashita
  • Publication number: 20110074963
    Abstract: An image pickup apparatus includes: an image pickup element; a shake detection device configured to detect a vibration applied to a main body of the image pickup apparatus; and an image blur correction device configured to perform a correction of removing an image blur of the image due to the vibration, the image blur correction device including: a holding member configured to hold the image pickup element; a first driving device configured to move the holding member between a first position where the center of the image pickup element substantially corresponds to the optical axis and a second position; a heat exhausting member arranged to be in contact with the holding member when the holding member is located at the second position; and a control device configured to drive the first driving device based on the vibration.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 31, 2011
    Applicant: FUJIFILM Corporation
    Inventors: Kouhei Awazu, Hayato Yamashita
  • Publication number: 20100128159
    Abstract: An imaging apparatus includes a solid-state imaging device and an imaging device driver. The imaging device includes first pixels and second pixels. The first pixels execute an imaging operation for a long exposure time. The second pixels execute an imaging operation for a short exposure time which overlaps with a part of the long exposure time. The first and second pixels are mixedly arranged in a two dimensional array. Plural different drive controlling modes each controlling operation timings of start and end of exposure of the first pixels and operation timings of start and end of exposure of the second pixels are prepared in advance. The imaging device driver selects one of the drive controlling modes in accordance with a shooting condition under which an object image is taken and drives the solid-state imaging device in accordance with the selected mode.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 27, 2010
    Inventor: Hayato YAMASHITA
  • Publication number: 20090313729
    Abstract: A driving laser unit (11) irradiates a laser beam on a cantilever (5) to cause thermal expansion deformation. A driving-laser control unit (13) performs feedback control for the cantilever (5) by controlling intensity of the laser beam on the basis of displacement of the cantilever (5) detected by a sensor (9). A thermal-response compensating circuit (35) has a constitution equivalent to an inverse transfer function of a heat transfer function of the cantilever (5) and compensates for a delay in a thermal response of the cantilever (5) to the light irradiation. Moreover, the cantilever (5) may be excited by controlling the intensity of the laser beam. By controlling light intensity, a Q value of a lever resonance system is also controlled. It is possible to increase scanning speed of an atomic force microscope.
    Type: Application
    Filed: May 26, 2006
    Publication date: December 17, 2009
    Applicant: National University Corporation Kanazawa University
    Inventors: Toshio Ando, Takayuki Uchihashi, Noriyuki Kodera, Hayato Yamashita
  • Publication number: 20080307864
    Abstract: Provided is an atomic force microscope capable of increasing the phase detection speed of a cantilever vibration. The cantilever (5) is excited and the cantilever (5) and a sample are relatively scanned. Displacement of the cantilever (5) is detected by a sensor. An oscillator (27) generates an excitation signal of the cantilever (5) and generates a reference wave signal having a frequency based on the excitation signal and a fixed phase. According to vibration of the cantilever (5), a trigger pulse generation circuit (41) generates a trigger pulse signal having a pulse position changing in accordance with the vibration of the cantilever (5). According to the reference wave signal and the trigger pulse signal, a phase signal generation circuit (43) generates a signal corresponding to the level of the reference wave signal at the pulse position as a phase signal of vibration of the cantilever (5). As the reference wave signal, a saw tooth wave is used.
    Type: Application
    Filed: December 12, 2006
    Publication date: December 18, 2008
    Applicant: National University Corporation Kanazawa University
    Inventors: Takayuki Uchihashi, Toshio Ando, Hayato Yamashita