Patents by Inventor Hee-Seog Jeon

Hee-Seog Jeon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100289071
    Abstract: A non-volatile memory device includes a floating gate formed on a substrate with a gate insulation layer interposed therebetween, a tunnel insulation layer formed on the floating gate, a select gate electrode inducing charge introduction through the gate insulation layer, and a control gate electrode inducing charge tunneling occurring through the tunnel insulation layer. The select gate electrode is insulated from the control gate electrode. According to the non-volatile memory device, a select gate electrode and a control gate electrode are formed on a floating gate, and thus a voltage is applied to the respective gate electrodes to write and erase data.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Inventors: Hee-Seog Jeon, Seung-Beom Yoon, Jeong-Uk Han, Yong-Tae Kim
  • Publication number: 20100285641
    Abstract: A mask read-only memory (ROM) device, which can stably output data, includes an on-cell and an off-cell. The on-cell includes an on-cell gate structure on a substrate and an on-cell junction structure within the substrate. The off-cell includes an off-cell gate structure on the substrate and an off-cell junction structure within the substrate. The on-cell gate structure includes an on-cell gate insulating film, an on-cell gate electrode and an on-cell gate spacer. The on-cell junction structure includes first and second on-cell ion implantation regions of a first polarity and third and fourth on-cell ion implantation regions of a second polarity. The off-cell gate structure includes an off-cell gate insulating film, an off-cell gate electrode and an off-cell gate spacer. The off-cell junction structure includes first and second off-cell ion implantation regions of the first polarity and a third off-cell ion implantation region of the second polarity.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 11, 2010
    Inventors: Yong-Kyu Lee, Jeong-Uk Han, Hee-Seog Jeon, Young-Ho Kim, Myung-Jo Chun, Jung-Ho Moon
  • Publication number: 20100265765
    Abstract: A non-volatile semiconductor memory device capable of reducing program disturb and a method of programming the same are provided. A bit line connected to a non-selected memory cell in the same block as a selected memory cell enters a floating state by inactivating a bit line selection switch, so that voltage levels of an first conductivity type channel and a source/drain terminal formed in a pocket second conductivity type well below a memory transistor have an intermediate level of a voltage level of a selection line and the pocket P type well. Therefore, program disturb caused by FN tunneling and junction hot electrons can be inhibited.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 21, 2010
    Inventors: Bo-Young Seo, Hee-Seog Jeon, Kwang-Tae Kim, Ji-Hoon Park, Myung-Jo Chun
  • Patent number: 7800158
    Abstract: There is provided a semiconductor device and a method of forming the same. The semiconductor device includes a memory device and a self-aligned selection device. A floating junction is formed between the self-aligned selection device and the memory device.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Seog Jeon, Jeong-Uk Han, Chang-Hun Lee, Sung-Taeg Kang
  • Patent number: 7799635
    Abstract: In a nonvolatile memory device and a method of fabricating the same, a device isolation layer is formed defining an active region in a semiconductor substrate. A gate insulation layer and a first conductive layer are formed on the semiconductor substrate. A pair of stack patterns are formed, each having a intergate dielectric layer pattern and a second conductive layer pattern on the first conductive layer. A mask pattern is formed on the first conductive layer pattern between the stack patterns, the mask pattern being spaced apart from each of the stack patterns. The first conductive layer is patterned using the stack patterns and the mask patterns as an etching mask. Impurity ions are implanted into the active region to form a pair of nonvolatile memory transistors and a select transistor. The resulting nonvolatile memory device includes a memory cell unit that includes the pair of nonvolatile memory transistors and the select transistor.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Wook Koh, Hee-Seog Jeon
  • Patent number: 7791951
    Abstract: A non-volatile memory device includes a floating gate formed on a substrate with a gate insulation layer interposed therebetween, a tunnel insulation layer formed on the floating gate, a select gate electrode inducing charge introduction through the gate insulation layer, and a control gate electrode inducing charge tunneling occurring through the tunnel insulation layer. The select gate electrode is insulated from the control gate electrode. According to the non-volatile memory device, a select gate electrode and a control gate electrode are formed on a floating gate, and thus a voltage is applied to the respective gate electrodes to write and erase data.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Seog Jeon, Seung-Beom Yoon, Jeong-Uk Han, Yong-Tae Kim
  • Patent number: 7777256
    Abstract: A mask read-only memory (ROM) device, which can stably output data, includes an on-cell and an off-cell. The on-cell includes an on-cell gate structure on a substrate and an on-cell junction structure within the substrate. The off-cell includes an off-cell gate structure on the substrate and an off -cell junction structure within the substrate. The on-cell gate structure includes an on-cell gate insulating film, an on-cell gate electrode and an on-cell gate spacer. The on-cell junction structure includes first and second on-cell ion implantation regions of a first polarity and third and fourth on-cell ion implantation regions of a second polarity. The off-cell gate structure includes an off-cell gate insulating film, an off-cell gate electrode and an off-cell gate spacer. The off-cell junction structure includes first and second off-cell ion implantation regions of the first polarity and a third off-cell ion implantation region of the second polarity.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: August 17, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Kyu Lee, Jeong-Uk Han, Hee-Seog Jeon, Young-Ho Kim, Myung-Jo Chun, Jung-Ho Moon
  • Patent number: 7768061
    Abstract: A self-aligned 1 bit silicon oxide nitride oxide silicon (SONOS) cell and a method of fabricating the same has high uniformity between adjacent SONOS cells, since the lengths of nitride layers do not vary due to misalignment when etching word lines of the 1 bit SONOS cells. An insulating layer pattern that forms a sidewall of a word line is formed on a semiconductor substrate, and a word line for a gate is formed on the sidewall thereof. Etching an ONO layer using a self-aligned etching spacer provides uniform adjacent SONOS cells.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 3, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-seog Jeon, Seung-beom Yoon, Yong-tae Kim
  • Patent number: 7733696
    Abstract: A non-volatile integrated circuit memory device may include a semiconductor substrate having first and second electrically isolated wells of a same conductivity type. A first plurality of non-volatile memory cell transistors may be provided on the first well, and a second plurality of non-volatile memory cell transistors may be provided on the second well. A local control gate line may be electrically coupled with the first and second pluralities of non-volatile memory cell transistors, and a group selection transistor may be electrically coupled between the local control gate line and a global control gate line. More particularly, the group selection transistor may be configured to electrically couple and decouple the local control gate line and the global control gate line responsive to a group selection gate signal applied to a gate of the group selection transistor. Related methods and systems are also discussed.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: June 8, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Kyu Lee, Myung-Jo Chun, Young-Ho Kim, Hee-Seog Jeon, Jeong-Uk Han
  • Patent number: 7696561
    Abstract: A non-volatile memory device includes a first sensing line, a first word line, a depletion channel region, and impurity regions. The first sensing line and the first word line are formed adjacent to each other in parallel on a substrate. The first sensing line and the first word line have a tunnel oxide layer, a first conductive pattern, a dielectric layer pattern and a second conductive pattern sequentially stacked on the substrate. The depletion channel region is formed at an upper portion of the substrate under the first sensing line. The impurity regions are formed at upper portions of the substrate exposed by the first sensing line and the first word line.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: April 13, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Khe Yoo, Jeong-Uk Han, Hee-Seog Jeon, Sung-Gon Choi, Bo-Young Seo, Chang-Min Jeon, Ji-Do Ryu
  • Patent number: 7697336
    Abstract: The present invention is directed to a non-volatile memory device and a method of operating the same. The non-volatile memory device includes a first transistor connected to an nth bitline and a second transistor connected to an (n+1)th bitline. The first transistor and the second transistor are serially coupled between the nth bitline and the (n+1)th bitline. The non-volatile memory device may include a 2-transistor 1-bit unit cell where a drain region and a source region of a memory cell have the same or similar structure. Since a cell array of a non-volatile memory device according to the invention may include a 2-transistor 2-bit unit cell, storage capacity of the non-volatile memory device may be doubled.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: April 13, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Min Jeon, Hee-Seog Jeon, Hyun-Khe Yoo, Sung-Gon Choi, Bo-Young Seo, Ji-Do Ryu
  • Publication number: 20100059888
    Abstract: A mask read-only memory (ROM) includes a dielectric layer formed on a substrate and a plurality of first conductive lines formed on the dielectric layer. A plurality of diodes are formed in the first conductive lines, and a plurality of final vias are formed for a first set of the diodes each representing a first type of memory cell, with no final via being formed for a second set of diodes each representing a second type of memory cell. Each of a plurality of second conductive lines is formed over a column of the diodes.
    Type: Application
    Filed: November 9, 2009
    Publication date: March 11, 2010
    Inventors: Yong-Kyu Lee, Hee-Seog JEON, Jeong-Uk HAN, Young-Ho Kim, Myung-Jo Chun
  • Patent number: 7642593
    Abstract: a nonvolatile memory device Includes an active region defined in a semiconductor substrate and a control gate electrode crossing over the active region. A gate insulating layer is interposed between the control gate electrode and the active reigon. A floating gate is formed in the active region to penetrate the control gate electrode and extend to a predetermined depth into the semiconductor substrate. A tunnel insulating layer is successively interposed between the control gate electrode and the floating gate, and between the semiconductor substrate and the floating gate. The floating gate may be formed after a trench is formed by sequentially etching a control gate conductive layer and the semiconductor substrate, and a tunnel insulating layer is formed on the trench and sidewalls of the control gate conductive layer. The floating gate is formed in the trench to extend into a predetermined depth into the semiconductor substrate.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: January 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Suk Choi, Jeong-Uk Han, Hee-Seog Jeon, Yong-Tae Kim, Seung-Jin Yang, Hyok-Ki Kwon
  • Patent number: 7638387
    Abstract: A mask read-only memory (ROM) includes a dielectric layer formed on a substrate and a plurality of first conductive lines formed on the dielectric layer. A plurality of diodes are formed in the first conductive lines, and a plurality of final vias are formed for a first set of the diodes each representing a first type of memory cell, with no final via being formed for a second set of diodes each representing a second type of memory cell. Each of a plurality of second conductive lines is formed over a column of the diodes.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: December 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Kyu Lee, Hee-Seog Jeon, Jeong-Uk Han, Young-Ho Kim, Myung-Jo Chun
  • Patent number: 7602008
    Abstract: Non-volatile memory devices and methods for fabricating non-volatile memory devices are disclosed. More specifically, split gate memory devices are provided having frameworks that provide increased floating gate coupling ratios, thereby enabling enhanced programming and erasing efficiency and performance.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Taeg Kang, Hyok-Ki Kwon, Bo Young Seo, Seung Beom Yoon, Hee Seog Jeon, Yong-Suk Choi, Jeong-Uk Han
  • Patent number: 7602004
    Abstract: A semiconductor device includes a first transistor and a second transistor formed on a substrate. Each of the first transistor and the second transistor has a first source region, first drain region of a first conductivity type and a gate. The first transistor is an off-transistor and includes a second source/drain region of the first conductivity type which surrounds at least a portion of the first source/drain region in the first transistor.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Seog Jeon, Jeong-Uk Han, Hyok-Ki Kwon
  • Publication number: 20090239349
    Abstract: In a nonvolatile memory device and a method of fabricating the same, a device isolation layer is formed defining an active region in a semiconductor substrate. A gate insulation layer and a first conductive layer are formed on the semiconductor substrate. A pair of stack patterns are formed, each having a intergate dielectric layer pattern and a second conductive layer pattern on the first conductive layer. A mask pattern is formed on the first conductive layer pattern between the stack patterns, the mask pattern being spaced apart from each of the stack patterns. The first conductive layer is patterned using the stack patterns and the mask patterns as an etching mask. Impurity ions are implanted into the active region to form a pair of nonvolatile memory transistors and a select transistor. The resulting nonvolatile memory device includes a memory cell unit that includes the pair of nonvolatile memory transistors and the select transistor.
    Type: Application
    Filed: June 2, 2009
    Publication date: September 24, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Wook Koh, Hee-Seog Jeon
  • Patent number: 7586146
    Abstract: In one embodiment, a semiconductor device includes a semiconductor substrate having a first junction region and a second junction region. An insulated floating gate is disposed on the substrate. The floating gate at least partially overlaps the first junction region. An insulated program gate is disposed on the floating gate. The program gate has a curved upper surface. The semiconductor device further includes an insulated erase gate disposed on the substrate and adjacent the floating gate. The erase gate partially overlaps the second junction region.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: September 8, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Seog Jeon, Seung-Beom Yoon, Jeong-Uk Han
  • Publication number: 20090194815
    Abstract: A high voltage transistor that includes a substrate where an active region is defined, a first impurity region and a second impurity region in the active region and a third impurity region between the first and second impurity regions, and a first gate electrode on the active region between the first impurity region and the third impurity region and a second gate electrode on the active region between the second impurity region and the third impurity region.
    Type: Application
    Filed: December 19, 2008
    Publication date: August 6, 2009
    Applicant: Samsung Electronics Co., Ltd
    Inventors: Sung-Gon CHOI, Hee-Seog Jeon
  • Publication number: 20090189210
    Abstract: A semiconductor flash memory device. The flash memory device includes a floating gate electrode disposed in a recess having slanted sides in a semiconductor substrate. A gate insulation film is interposed between the floating gate electrode and the semiconductor substrate. A control gate electrode is disposed over the floating gate electrode. The floating gate electrode includes projections adjacent to the slanted sides of the recess.
    Type: Application
    Filed: April 1, 2009
    Publication date: July 30, 2009
    Inventors: Yong-Suk Choi, Jeong-Uk Han, Hee-Seog Jeon, Scung-Jin Yang, Ilyok-Ki Kwon