Patents by Inventor Helmut Hagleitner

Helmut Hagleitner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9142631
    Abstract: Semiconductor Schottky barrier devices include a wide bandgap semiconductor layer, a Schottky barrier metal layer on the wide bandgap semiconductor layer and forming a Schottky junction, a current spreading layer on the Schottky barrier metal layer remote from the wide bandgap semiconductor layer and two or more diffusion barrier layers between the current spreading layer and the Schottky barrier metal layer. The first diffusion barrier layer reduces mixing of the current spreading layer and the second diffusion barrier layer at temperatures of the Schottky junction above about 300° C. and the second diffusion barrier layer reduces mixing of the first diffusion barrier layer and the Schottky barrier metal layer at the temperatures of the Schottky junction above about 300° C.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: September 22, 2015
    Assignee: Cree, Inc.
    Inventors: Van Mieczkowski, Helmut Hagleitner, Zoltan Ring
  • Patent number: 9070626
    Abstract: Embodiments of an ohmic contact structure for a Group III nitride semiconductor device and methods of fabrication thereof are disclosed. In one embodiment, the ohmic contact structure has less than or equal to 5%, more preferably less than or equal to 2%, more preferably less than or equal to 1.5%, and even more preferably less than or equal to 1% degradation for 1000 hours High Temperature Soak (HTS) at 300 degrees Celsius. In another embodiment, the ohmic contact structure additionally or alternatively has less than or equal to 10% degradation, more preferably less than or equal to 7.5% degradation, more preferably less than or equal to 6% degradation, more preferably less than or equal to 5% degradation, and even more preferably less than 3% degradation for 1000 hours High Temperature operating Life (HToL) at 225 degrees Celsius and 50 milliamps (mA) per millimeter (mm).
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: June 30, 2015
    Assignee: Cree, Inc.
    Inventors: Helmut Hagleitner, Daniel Namishia
  • Publication number: 20150140806
    Abstract: Embodiments of a semiconductor wafer having wafer-level die attach metallization on a back-side of the semiconductor wafer, resulting semiconductor dies, and methods of manufacturing the same are disclosed. In one embodiment, a semiconductor wafer includes a semiconductor structure and a front-side metallization that includes front-side metallization elements for a number of semiconductor die areas. The semiconductor wafer also includes vias that extend from a back-side of the semiconductor structure to the front-side metallization elements. A back-side metallization is on the back-side of the semiconductor structure and within the vias. For each via, one or more barrier layers are on a portion of the back-side metallization that is within the via and around a periphery of the via. The semiconductor wafer further includes wafer-level die attach metallization on the back-side metallization other than the portions of the back-side metallization that are within the vias and around the peripheries of the vias.
    Type: Application
    Filed: January 7, 2015
    Publication date: May 21, 2015
    Inventors: Fabian Radulescu, Helmut Hagleitner, Terry Alcorn, William T. Pulz
  • Patent number: 8994182
    Abstract: The present disclosure relates to a dielectric solder barrier for a semiconductor die. In one embodiment, a semiconductor die includes a substrate, a semiconductor body on a first surface of the substrate, one or more first metallization layers on the semiconductor body opposite the substrate, a via that extends from a second surface of the substrate through the substrate and the semiconductor body to the one or more first metallization layers, and a second metallization layer on the second surface of the substrate and within the via. A portion of the second metallization layer within the via provides an electrical connection between the second metallization layer and the one or more first metallization layers. The semiconductor die further includes a dielectric solder barrier on the second metallization layer. Preferably, the dielectric solder barrier is on a surface of the portion of the second metallization layer within the via.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 31, 2015
    Assignee: Cree, Inc.
    Inventors: Helmut Hagleitner, Fabian Radulescu
  • Patent number: 8994073
    Abstract: Embodiments of a Silicon Nitride (SiN) passivation structure for a semiconductor device are disclosed. In general, a semiconductor device includes a semiconductor body and a SiN passivation structure over a surface of the semiconductor body. In one embodiment, the SiN passivation structure includes one or more Hydrogen-free SiN layers on, and preferably directly on, the surface of the semiconductor body, a Hydrogen barrier layer on, and preferably directly on, a surface of the one or more Hydrogen-free SiN layers opposite the semiconductor body, and a Chemical Vapor Deposition (CVD) SiN layer on, and preferably directly on, a surface of the Hydrogen barrier layer opposite the one or more Hydrogen-free SiN layers. The Hydrogen barrier layer preferably includes one or more oxide layers of the same or different compositions. Further, in one embodiment, the Hydrogen barrier layer is formed by Atomic Layer Deposition (ALD).
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: March 31, 2015
    Assignee: Cree, Inc.
    Inventors: Helmut Hagleitner, Zoltan Ring
  • Patent number: 8969927
    Abstract: Embodiments of a gate contact for a semiconductor device and methods of fabrication thereof are disclosed. In one embodiment, a semiconductor device includes a semiconductor structure and a dielectric layer on a surface of the semiconductor structure, where the dielectric layer has an opening that exposes an area of the semiconductor structure. A gate contact for the semiconductor device is formed on the exposed area of the semiconductor structure through the opening in the dielectric layer. The gate contact includes a proximal end on a portion of the exposed area of the semiconductor structure, a distal end opposite the proximal end, and sidewalls that each extend between the proximal end and the distal end of the gate contact. For each sidewall of the gate contact, an air region separates the sidewall and the distal end of the gate contact from the dielectric layer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 3, 2015
    Assignee: Cree, Inc.
    Inventors: Fabian Radulescu, Helmut Hagleitner
  • Patent number: 8970010
    Abstract: Embodiments of a semiconductor wafer having wafer-level die attach metallization on a back-side of the semiconductor wafer, resulting semiconductor dies, and methods of manufacturing the same are disclosed. In one embodiment, a semiconductor wafer includes a semiconductor structure and a front-side metallization that includes front-side metallization elements for a number of semiconductor die areas. The semiconductor wafer also includes vias that extend from a back-side of the semiconductor structure to the front-side metallization elements. A back-side metallization is on the back-side of the semiconductor structure and within the vias. For each via, one or more barrier layers are on a portion of the back-side metallization that is within the via and around a periphery of the via. The semiconductor wafer further includes wafer-level die attach metallization on the back-side metallization other than the portions of the back-side metallization that are within the vias and around the peripheries of the vias.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 3, 2015
    Assignee: Cree, Inc.
    Inventors: Fabian Radulescu, Helmut Hagleitner, Terry Alcorn, William T. Pulz
  • Patent number: 8907350
    Abstract: Wide bandgap semiconductor devices are fabricated by providing a wide bandgap semiconductor layer, providing a plurality of recesses in the wide bandgap semiconductor layer, and providing a metal gate contact in the plurality of recesses. A protective layer may be provided on the wide bandgap semiconductor layer, the protective layer having a first opening extending therethrough, a dielectric layer may be provided on the protective layer, the dielectric layer having a second opening extending therethrough that is narrower than the first opening, and a gate contact may be provided in the first and second openings. The metal gate contact may be provided to include a barrier metal layer in the plurality of recesses, and a current spreading layer on the barrier metal layer remote from the wide bandgap semiconductor layer. Related devices and fabrication methods are also discussed.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: December 9, 2014
    Assignee: Cree, Inc.
    Inventors: Van Mieczkowski, Helmut Hagleitner
  • Patent number: 8896122
    Abstract: Schottky barrier semiconductor devices are provided including a wide bandgap semiconductor layer and a gate on the wide bandgap semiconductor layer. The gate includes a metal layer on the wide bandgap semiconductor layer including a nickel oxide (NiO) layer. Related methods of fabricating devices are also provided herein.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: November 25, 2014
    Assignee: Cree, Inc.
    Inventors: Van Mieczkowski, Helmut Hagleitner, Kevin Haberern
  • Publication number: 20140264868
    Abstract: Embodiments of a semiconductor wafer having wafer-level die attach metallization on a back-side of the semiconductor wafer, resulting semiconductor dies, and methods of manufacturing the same are disclosed. In one embodiment, a semiconductor wafer includes a semiconductor structure and a front-side metallization that includes front-side metallization elements for a number of semiconductor die areas. The semiconductor wafer also includes vias that extend from a back-side of the semiconductor structure to the front-side metallization elements. A back-side metallization is on the back-side of the semiconductor structure and within the vias. For each via, one or more barrier layers are on a portion of the back-side metallization that is within the via and around a periphery of the via. The semiconductor wafer further includes wafer-level die attach metallization on the back-side metallization other than the portions of the back-side metallization that are within the vias and around the peripheries of the vias.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: CREE, INC.
    Inventors: Fabian Radulescu, Helmut Hagleitner, Terry Alcorn, William T. Pulz
  • Publication number: 20140264713
    Abstract: Embodiments of a gate contact for a semiconductor device and methods of fabrication thereof are disclosed. In one embodiment, a semiconductor device includes a semiconductor structure and a dielectric layer on a surface of the semiconductor structure, where the dielectric layer has an opening that exposes an area of the semiconductor structure. A gate contact for the semiconductor device is formed on the exposed area of the semiconductor structure through the opening in the dielectric layer. The gate contact includes a proximal end on a portion of the exposed area of the semiconductor structure, a distal end opposite the proximal end, and sidewalls that each extend between the proximal end and the distal end of the gate contact. For each sidewall of the gate contact, an air region separates the sidewall and the distal end of the gate contact from the dielectric layer.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: CREE, INC.
    Inventors: Fabian Radulescu, Helmut Hagleitner
  • Publication number: 20140175664
    Abstract: The present disclosure relates to a dielectric solder barrier for a semiconductor die. In one embodiment, a semiconductor die includes a substrate, a semiconductor body on a first surface of the substrate, one or more first metallization layers on the semiconductor body opposite the substrate, a via that extends from a second surface of the substrate through the substrate and the semiconductor body to the one or more first metallization layers, and a second metallization layer on the second surface of the substrate and within the via. A portion of the second metallization layer within the via provides an electrical connection between the second metallization layer and the one or more first metallization layers. The semiconductor die further includes a dielectric solder barrier on the second metallization layer. Preferably, the dielectric solder barrier is on a surface of the portion of the second metallization layer within the via.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: CREE, INC.
    Inventors: Helmut Hagleitner, Fabian Radulescu
  • Patent number: 8749070
    Abstract: The present disclosure relates to a dielectric solder barrier for a semiconductor die. In one embodiment, a semiconductor die includes a substrate, a semiconductor body on a first surface of the substrate, one or more first metallization layers on the semiconductor body opposite the substrate, a via that extends from a second surface of the substrate through the substrate and the semiconductor body to the one or more first metallization layers, and a second metallization layer on the second surface of the substrate and within the via. A portion of the second metallization layer within the via provides an electrical connection between the second metallization layer and the one or more first metallization layers. The semiconductor die further includes a dielectric solder barrier on the second metallization layer. Preferably, the dielectric solder barrier is on a surface of the portion of the second metallization layer within the via.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 10, 2014
    Assignee: Cree, Inc.
    Inventors: Helmut Hagleitner, Fabian Radulescu
  • Publication number: 20140124792
    Abstract: Embodiments of a Nickel-rich (Ni-rich) Schottky contact for a semiconductor device and a method of fabrication thereof are disclosed. Preferably, the semiconductor device is a radio frequency or power device such as, for example, a High Electron Mobility Transistor (HEMT), a Schottky diode, a Metal Semiconductor Field Effect Transistor (MESFET), or the like. In one embodiment, the semiconductor device includes a semiconductor body and a Ni-rich Schottky contact on a surface of the semiconductor body. The Ni-rich Schottky contact includes a multilayer Ni-rich contact metal stack. The semiconductor body is preferably formed in a Group III nitride material system (e.g., includes one or more Gallium Nitride (GaN) and/or Aluminum Gallium Nitride (AlGaN) layers). Because the Schottky contact is Ni-rich, leakage through the Schottky contact is substantially reduced.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 8, 2014
    Applicant: Cree, Inc.
    Inventors: Helmut Hagleitner, Fabian Radulescu, Daniel Namishia
  • Publication number: 20140103363
    Abstract: A semiconductor die, which includes a substrate, a group of primary conduction sub-layers, and a group of separation sub-layers, is disclosed. The group of primary conduction sub-layers is over the substrate. Each adjacent pair of the group of primary conduction sub-layers is separated by at least one of the group of separation sub-layers. As a result, the group of separation sub-layers mitigates grain growth in the group of primary conduction sub-layers.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 17, 2014
    Applicant: CREE, INC.
    Inventors: Zoltan Ring, Helmut Hagleitner, Daniel Namishia, Fabian Radulescu
  • Publication number: 20140097469
    Abstract: Embodiments of a Silicon Nitride (SiN) passivation structure for a semiconductor device and methods of fabrication thereof are disclosed. In general, a semiconductor device includes a semiconductor body and a SiN passivation structure over a surface of the semiconductor body. In one embodiment, the SiN passivation structure includes one or more Hydrogen-free SiN layers on, and preferably directly on, the surface of the semiconductor body, a Hydrogen barrier layer on, and preferably directly on, a surface of the one or more Hydrogen-free SiN layers opposite the semiconductor body, and a Chemical Vapor Deposition (CVD) SiN layer on, and preferably directly on, a surface of the Hydrogen barrier layer opposite the one or more Hydrogen-free SiN layers. The Hydrogen barrier layer preferably includes one or more oxide layers of the same or different compositions. Further, in one embodiment, the Hydrogen barrier layer is formed by Atomic Layer Deposition (ALD).
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Inventors: Helmut Hagleitner, Zoltan Ring
  • Patent number: 8563372
    Abstract: A method of forming a semiconductor device, the method comprising providing a semiconductor layer, and providing a first layer of a first metal on the semiconductor layer. A second layer may be provided on the first layer of the first metal. The second layer may include a layer of silicon and a layer of a second metal, and the first and second metals may be different. The first metal may be titanium and the second metal may be nickel. Related devices, structures, and other methods are also discussed.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: October 22, 2013
    Assignee: Cree, Inc.
    Inventors: Helmut Hagleitner, Zoltan Ring, Scott Sheppard, Jason Henning, Jason Gurganus, Dan Namishia
  • Publication number: 20130256841
    Abstract: The present disclosure relates to providing via plugs in vias of a semiconductor material. The via plugs may be formed of a polymer, such as a polyimide, that can withstand subsequent soldering and operating temperatures. The via plugs effectively fill the vias to prevent the vias from being filled substantially with solder during a subsequent soldering processes.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 3, 2013
    Applicant: CREE, INC.
    Inventors: Van Mieczkowski, Helmut Hagleitner, William T. Pulz
  • Publication number: 20130234278
    Abstract: The present disclosure relates to a Schottky contact for a semiconductor device. The semiconductor device has a body formed from one or more epitaxial layers, which reside over a substrate. The Schottky contact may include a Schottky layer, a first diffusion barrier layer, and a third layer. The Schottky layer is formed of a first metal and is provided over at least a portion of a first surface of the body. The first diffusion barrier layer is formed of a silicide of the first metal and is provided over the Schottky layer. The third layer is formed of a second metal and is provided over the first diffusion barrier layer. In one embodiment, the first metal is nickel, and as such, the silicide is nickel silicide. Various other layers may be provided between or above the Schottky layer, the first diffusion barrier layer, and the third layer.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: CREE, INC.
    Inventors: Helmut Hagleitner, Saptharishi Sriram
  • Publication number: 20120175682
    Abstract: Embodiments of an ohmic contact structure for a Group III nitride semiconductor device and methods of fabrication thereof are disclosed. In one embodiment, the ohmic contact structure has less than or equal to 5%, more preferably less than or equal to 2%, more preferably less than or equal to 1.5%, and even more preferably less than or equal to 1% degradation for 1000 hours High Temperature Soak (HTS) at 300 degrees Celsius. In another embodiment, the ohmic contact structure additionally or alternatively has less than or equal to 10% degradation, more preferably less than or equal to 7.5% degradation, more preferably less than or equal to 6% degradation, more preferably less than or equal to 5% degradation, and even more preferably less than 3% degradation for 1000 hours High Temperature operating Life (HToL) at 225 degrees Celsius and 50 milliamps (mA) per millimeter (mm).
    Type: Application
    Filed: July 14, 2011
    Publication date: July 12, 2012
    Applicant: CREE, INC.
    Inventors: Helmut Hagleitner, Daniel Namishia