Patents by Inventor Henry A. Blauvelt

Henry A. Blauvelt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060251849
    Abstract: An optical apparatus comprises: a substrate; an optical device, an optical waveguide, or an optical element on the first substrate surface; a reflection-suppressing layer on a second substrate surface opposite the first substrate surface; and an absorbing layer on the reflection-suppressing layer, so that over at least a portion of the second substrate surface the reflection-suppressing layer is between the second substrate surface and the absorbing layer. The absorbing layer absorbs light over at least a portion of an operative wavelength range of the optical apparatus, while the reflection-suppressing layer suppresses reflection from the second substrate surface of light over at least a portion of the operative wavelength range of the optical apparatus to a reflectivity value below that of the second substrate surface with only the absorbing layer present.
    Type: Application
    Filed: May 5, 2006
    Publication date: November 9, 2006
    Inventors: Henry Blauvelt, David Vernooy
  • Patent number: 7095928
    Abstract: An optical apparatus comprises an optical waveguide, a bottom surface and walls formed on a first substrate and defining a detection volume with an upper opening, and a photodetector active area formed on a photodetector substrate. The bottom surface may be provided with a reflective coating. The waveguide is positioned relative to the detection volume so that light emerging from an end face of the waveguide is received within the detection volume. The detector substrate is mounted on the first substrate so as to cover the upper opening of the detection volume with the active area exposed to the detection volume. The optical waveguide may be formed on the first substrate along with the detection volume, or the optical waveguide may be formed on a separate waveguide substrate, and the waveguide substrate assembled with the first substrate.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: August 22, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20060182402
    Abstract: A multiple-core optical waveguide comprises: a substrate; lower and upper waveguide core layers; a waveguide core between the upper and lower waveguide core layers; upper and lower cladding; and middle cladding between the upper and lower waveguide core layers substantially surrounding the waveguide core. Each of the lower, middle, and upper claddings has a refractive index less than refractive indices of the lower waveguide core layer, the upper waveguide core layer, and the waveguide core. Along at least a given portion of the optical waveguide, the upper and lower waveguide core layers extend bilaterally substantially beyond the lateral extent of a propagating optical mode supported by the optical waveguide, the lateral extent of the supported optical mode being determined at least in part by the width of the waveguide core along the given portion of the optical waveguide.
    Type: Application
    Filed: February 15, 2005
    Publication date: August 17, 2006
    Inventors: Henry Blauvelt, David Vernooy
  • Publication number: 20060165373
    Abstract: An optical component may comprise a horizontal member with two side walls and a substantially transparent end wall protruding from the horizontal member. The end wall, side walls and horizontal member may partially enclose an interior volume, and optical functionality is imparted in any suitable manner on at least a portion of the end wall. An optical assembly may comprise such an optical component mounted on a waveguide substrate along with a planar waveguide and a second waveguide, which are end-coupled by either reflection from the optical component end wall or transmission through the optical component end wall. An end portion of a planar waveguide may be received within the interior volume of the mounted component. Proper positioning of the optical component relative to the waveguides may be facilitated by alignment surfaces and/or alignment marks on the component and/or waveguide substrate.
    Type: Application
    Filed: April 11, 2006
    Publication date: July 27, 2006
    Applicant: Xponent Photonics Inc
    Inventors: Henry Blauvelt, Joel Paslaski, David Vernooy
  • Publication number: 20060131482
    Abstract: A photodetector comprises a semiconductor substrate with entrance and reflecting faces formed at the substrate upper surface. The reflecting face forms an acute angle with the substrate surface and is positioned so that an optical beam transmitted through the entrance face into the substrate is internally reflected from the reflecting face toward the substrate upper surface. A photodetector active region is formed on the substrate upper surface and is positioned so that the reflected optical beam impinges on the active region. The photodetector may be mounted on a second substrate for receiving an optical beam from a planar waveguide formed on the second substrate or an optical fiber mounted in a groove on the second substrate.
    Type: Application
    Filed: January 31, 2006
    Publication date: June 22, 2006
    Inventors: Henry Blauvelt, David Vernooy, Hao Lee
  • Publication number: 20060127011
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Application
    Filed: January 17, 2006
    Publication date: June 15, 2006
    Inventors: Henry Blauvelt, Kerry Vahala, David Vernooy, Joel Paslaski
  • Publication number: 20060120669
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Application
    Filed: January 9, 2006
    Publication date: June 8, 2006
    Inventors: Henry Blauvelt, Kerry Vahala, David Vernooy, Joel Paslaski
  • Publication number: 20060110100
    Abstract: An optical apparatus comprises a semiconductor optical device waveguide formed on a semiconductor substrate, and an integrated end-coupled waveguide formed on the semiconductor substrate. The integrated waveguide may comprise materials differing from those of the device waveguide and the substrate. Spatially selective material processing may be employed for first forming the optical device waveguide on the substrate, and for subsequently depositing and forming the integrated end-coupled waveguide on the substrate. Spatially selective material processing enables accurate spatial mode matching and transverse alignment of the waveguides, and multiple device waveguides and corresponding integrated end-coupled waveguides may be fabricated concurrently on a common substrate on a wafer scale.
    Type: Application
    Filed: January 9, 2006
    Publication date: May 25, 2006
    Inventors: Henry Blauvelt, David Vernooy, Joel Paslaski, Charles Grosjean, Hao Lee, Franklin Monzon, Katrina Nguyen
  • Patent number: 7050681
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: May 23, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20060088266
    Abstract: Formation of a substantially flat upper cladding surface over a waveguide core facilitates transverse-coupling between assembled waveguides, and/or provides mechanical alignment and/or support. An embedding medium may be employed for securing optical assemblies and protecting optical surfaces thereof. Structural elements fabricated with a low-profile core may be employed for providing mechanical alignment and/or support, aiding in the encapsulation process, and so forth.
    Type: Application
    Filed: December 9, 2005
    Publication date: April 27, 2006
    Inventors: Henry Blauvelt, David Vernooy, Joel Paslaski, Guido Hunziker
  • Patent number: 7031575
    Abstract: An optical component may comprise a horizontal member with two side walls and a substantially transparent end wall protruding from the horizontal member. The end wall, side walls and horizontal member may partially enclose an interior volume, and optical functionality is imparted in any suitable manner on at least a portion of the end wall. An optical assembly may comprise such an optical component mounted on a waveguide substrate along with a planar waveguide and a second waveguide, which are end-coupled by either reflection from the optical component end wall or transmission through the optical component end wall. An end portion of a planar waveguide may be received within the interior volume of the mounted component. Proper positioning of the optical component relative to the waveguides may be facilitated by alignment surfaces and/or alignment marks on the component and/or waveguide substrate.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: April 18, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, Joel S. Paslaski, David W. Vernooy
  • Patent number: 6992276
    Abstract: A photodetector comprises a semiconductor substrate with entrance and reflecting faces formed at the substrate upper surface. The reflecting face forms an acute angle with the substrate surface and is positioned so that an optical beam transmitted through the entrance face into the substrate is internally reflected from the reflecting face toward the substrate upper surface. A photodetector active region is formed on the substrate upper surface and is positioned so that the reflected optical beam impinges on the active region. The photodetector may be mounted on a second substrate for receiving an optical beam from a planar waveguide formed on the second substrate or an optical fiber mounted in a groove on the second substrate.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: January 31, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Hao Lee
  • Patent number: 6987913
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: January 17, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 6985646
    Abstract: An optical apparatus comprises a semiconductor optical device waveguide formed on a semiconductor substrate, and an integrated end-coupled waveguide formed on the semiconductor substrate. The integrated waveguide may comprise materials differing from those of the device waveguide and the substrate. Spatially selective material processing may be employed for first forming the optical device waveguide on the substrate, and for subsequently depositing and forming the integrated end-coupled waveguide on the substrate. Spatially selective material processing enables accurate spatial mode matching and transverse alignment of the waveguides, and multiple device waveguides and corresponding integrated end-coupled waveguides may be fabricated concurrently on a common substrate on a wafer scale.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: January 10, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski, Charles I. Grosjean, Hao Lee, Franklin G. Monzon, Katrina H. Nguyen
  • Patent number: 6981806
    Abstract: A method for micro-hermetic packaging of an optical device comprises: forming a micro-hermetic cavity on a substrate; providing a transmission optical waveguide transferring optical power between the interior and the exterior of the micro-hermetic cavity; fabricating or mounting at least one optical device within the micro-hermetic cavity; enabling optical power transfer between the optical device and the transmission optical waveguide; and sealing the optical device within the micro-hermetic cavity. The micro-hermetic cavity may be fabricated of a size comparable to the optical device, and many such cavities may be simultaneously fabricated on a single substrate using wafer-scale processing. The transmission optical waveguide, electrical feed-throughs, and/or other monitoring/controlling components may be provided with the micro-hermetic cavity on the same substrate, or as a separate component and/or on a separate substrate.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: January 3, 2006
    Assignee: Xponent Photonics Inc
    Inventors: Albert M. Benzoni, Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Patent number: 6975798
    Abstract: Formation of a substantially flat upper cladding surface over a waveguide core facilitates transverse-coupling between assembled waveguides, and/or provides mechanical alignment and/or support. An embedding medium may be employed for securing optical assemblies and protecting optical surfaces thereof. Structural elements fabricated with a low-profile core may be employed for providing mechanical alignment and/or support, aiding in the encapsulation process, and so forth.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: December 13, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski, Guido Hunziker
  • Publication number: 20050213889
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Application
    Filed: May 25, 2005
    Publication date: September 29, 2005
    Inventors: Henry Blauvelt, Kerry Vahala, David Vernooy, Joel Paslaski
  • Publication number: 20050207464
    Abstract: A grating-stabilized semiconductor laser comprises a semiconductor laser gain medium, an integrated low-index waveguide, and a waveguide grating segment providing optical feedback for laser oscillation. The laser may be adapted for multi-mode or single-mode operation. A multiple-mode laser may oscillate with reduced power and/or wavelength fluctuations associated with longitudinal mode wavelength shifts, relative to Fabry-Perot lasers lacking gratings. A single-mode laser may include a compensator, wavelength reference, and detector for generating an error signal, and a feedback mechanism for controlling the compensator for maintaining the laser wavelength locked to the reference. The laser may include means for altering, enhancing, tuning, and/or stabilizing the waveguide grating reflectivity spectral profile. The laser may be adapted for optical transverse-coupling to another waveguide.
    Type: Application
    Filed: May 26, 2005
    Publication date: September 22, 2005
    Inventors: Henry Blauvelt, David Vernooy, Joel Paslaski
  • Patent number: 6942397
    Abstract: A packaged fiber-coupled optical device comprises an alignment housing with a fiber retainer, optical fiber segment(s), and optical component(s) (on substrate(s) with fiber groove(s)). Upon assembly the protruding end(s) of the fiber segment(s) is/are positioned against the fiber retainer, and the fiber groove(s) is/are aligned with the protruding end(s) of the fiber segment(s). The fiber retainer urges the protruding end(s) of the fiber segment(s) into the fiber groove(s). The fiber groove(s) position the protruding end(s) of the optical fiber(s) seated therein for optical coupling with optical component(s). The alignment housing and/or a fiber subassembly may be configured for engaging a mating fiber-optic connector.
    Type: Grant
    Filed: July 24, 2004
    Date of Patent: September 13, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Albert M. Benzoni, Mark E. Temple, Joel S. Paslaski, Henry A. Blauvelt
  • Publication number: 20050152643
    Abstract: The launch conditions (injected beam size/shape, radial/angular offset from the multimode fiber axis) may be varied to preferentially excite certain transverse modes of multimode optical fiber. To reduce multimode dispersion in the fiber, modes are excited having smaller amplitudes near fiber index defects. Launch conditions may be controlled using a substrate with grooves for launching and receiving fibers, a planar waveguide formed on a substrate along with a groove for aligning the multimode fiber and waveguide, or free-space optical components. A waveguide may provide the desired injected beam size/shape. Spatially selective material processing enables accurate alignment of the groove(s) (and hence the fiber(s) therein), yielding the desired radial/angular offsets.
    Type: Application
    Filed: January 12, 2005
    Publication date: July 14, 2005
    Inventors: Henry Blauvelt, David Vernooy