Patents by Inventor Henry A. Blauvelt

Henry A. Blauvelt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6917636
    Abstract: A grating-stabilized semiconductor laser comprises a semiconductor laser gain medium, an integrated low-index waveguide, and a waveguide grating segment providing optical feedback for laser oscillation. The laser may be adapted for multi-mode or single-mode operation. A multiple-mode laser may oscillate with reduced power and/or wavelength fluctuations associated with longitudinal mode wavelength shifts, relative to Fabry-Perot lasers lacking gratings. A single-mode laser may include a compensator, wavelength reference, and detector for generating an error signal, and a feedback mechanism for controlling the compensator for maintaining the laser wavelength locked to the reference. The laser may include means for altering, enhancing, tuning, and/or stabilizing the waveguide grating reflectivity spectral profile. The laser may be adapted for optical transverse-coupling to another waveguide.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: July 12, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20050078913
    Abstract: An optical component may comprise a horizontal member with two side walls and a substantially transparent end wall protruding from the horizontal member. The end wall, side walls and horizontal member may partially enclose an interior volume, and optical functionality is imparted in any suitable manner on at least a portion of the end wall. An optical assembly may comprise such an optical component mounted on a waveguide substrate along with a planar waveguide and a second waveguide, which are end-coupled by either reflection from the optical component end wall or transmission through the optical component end wall. An end portion of a planar waveguide may be received within the interior volume of the mounted component. Proper positioning of the optical component relative to the waveguides may be facilitated by alignment surfaces and/or alignment marks on the component and/or waveguide substrate.
    Type: Application
    Filed: October 9, 2003
    Publication date: April 14, 2005
    Inventors: Henry Blauvelt, Joel Paslaski, David Vernooy
  • Publication number: 20050041932
    Abstract: A packaged fiber-coupled optical device comprises an alignment housing with a fiber retainer, optical fiber segment(s), and optical component(s) (on substrate(s) with fiber groove(s)). Upon assembly the protruding end(s) of the fiber segment(s) is/are positioned against the fiber retainer, and the fiber groove(s) is/are aligned with the protruding end(s) of the fiber segment(s). The fiber retainer urges the protruding end(s) of the fiber segment(s) into the fiber groove(s). The fiber groove(s) position the protruding end(s) of the optical fiber(s) seated therein for optical coupling with optical component(s). The alignment housing and/or a fiber subassembly may be configured for engaging a mating fiber-optic connector.
    Type: Application
    Filed: July 24, 2004
    Publication date: February 24, 2005
    Inventors: Albert Benzoni, Mark Temple, Joel Paslaski, Henry Blauvelt
  • Publication number: 20040264905
    Abstract: A multiple-core planar optical waveguide comprises: a substantially planar waveguide substrate; a lower waveguide core; an upper waveguide core; lower cladding between the substrate and the lower waveguide core; and upper cladding above the upper waveguide core. At least a portion the upper waveguide core is positioned above and substantially parallel to at least a portion of the lower waveguide core. The lower and upper claddings have refractive indices less than refractive indices of the lower and upper waveguide cores. The width of the lower waveguide core is substantially larger than its thickness along at least a portion of its length, and is substantially flat along that portion of its length, thereby yielding a substantially flat surface for forming at least a portion of the upper waveguide core.
    Type: Application
    Filed: April 29, 2004
    Publication date: December 30, 2004
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20040218849
    Abstract: An optical apparatus comprises an optical waveguide, a bottom surface and walls formed on a first substrate and defining a detection volume with an upper opening, and a photodetector active area formed on a photodetector substrate. The bottom surface may be provided with a reflective coating. The waveguide is positioned relative to the detection volume so that light emerging from an end face of the waveguide is received within the detection volume. The detector substrate is mounted on the first substrate so as to cover the upper opening of the detection volume with the active area exposed to the detection volume. The optical waveguide may be formed on the first substrate along with the detection volume, or the optical waveguide may be formed on a separate waveguide substrate, and the waveguide substrate assembled with the first substrate.
    Type: Application
    Filed: November 25, 2003
    Publication date: November 4, 2004
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20040218870
    Abstract: An optical apparatus comprises a substrate, first and second transmission optical elements on the substrate, and an optical component (such as an isolator) and focusing optical element(s) on the substrate between the transmission elements. Transmission elements may include planar waveguide(s) formed on the substrate and/or optical fiber(s) mounted in groove(s) on the substrate. The focusing element(s) may include: gradient-index (GRIN) segment(s) mounted on the substrate or spliced onto a fiber, a focusing segment(s) of a planar waveguide, ball lens(es), aspheric lens(es), and/or Fresnel lens(es). A dual-lens optical assembly comprises a pair of GRIN segments secured to a substrate in one or more grooves, and may be formed from a common length of GRIN optical medium. An optical component (such as an isolator) is positioned between the paired GRIN segments, and optical power is transmitted by the dual-lens assembly between planar waveguide(s) and/or fiber(s) through the optical component.
    Type: Application
    Filed: August 29, 2003
    Publication date: November 4, 2004
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20040165812
    Abstract: An optical apparatus comprises a semiconductor optical device waveguide formed on a semiconductor substrate, and an integrated end-coupled waveguide formed on the semiconductor substrate. The integrated waveguide may comprise materials differing from those of the device waveguide and the substrate. Spatially selective material processing may be employed for first forming the optical device waveguide on the substrate, and for subsequently depositing and forming the integrated end-coupled waveguide on the substrate. Spatially selective material processing enables accurate spatial mode matching and transverse alignment of the waveguides, and multiple device waveguides and corresponding integrated end-coupled waveguides may be fabricated concurrently on a common substrate on a wafer scale.
    Type: Application
    Filed: January 16, 2004
    Publication date: August 26, 2004
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski, Charles I. Grosjean, Hao Lee, Franklin G. Monzon, Katrina H. Nguyen
  • Publication number: 20040129935
    Abstract: A photodetector comprises a semiconductor substrate with entrance and reflecting faces formed at the substrate upper surface. The reflecting face forms an acute angle with the substrate surface and is positioned so that an optical beam transmitted through the entrance face into the substrate is internally reflected from the reflecting face toward the substrate upper surface. A photodetector active region is formed on the substrate upper surface and is positioned so that the reflected optical beam impinges on the active region. The photodetector may be mounted on a second substrate for receiving an optical beam from a planar waveguide formed on the second substrate or an optical fiber mounted in a groove on the second substrate.
    Type: Application
    Filed: September 12, 2003
    Publication date: July 8, 2004
    Inventors: Henry A. Blauvelt, David W. Vernooy, Hao Lee
  • Publication number: 20040052480
    Abstract: A method for micro-hermetic packaging of an optical device comprises: forming a micro-hermetic cavity on a substrate; providing a transmission optical waveguide transferring optical power between the interior and the exterior of the micro-hermetic cavity; fabricating or mounting at least one optical device within the micro-hermetic cavity; enabling optical power transfer between the optical device and the transmission optical waveguide; and sealing the optical device within the micro-hermetic cavity. The micro-hermetic cavity may be fabricated of a size comparable to the optical device, and many such cavities may be simultaneously fabricated on a single substrate using wafer-scale processing. The transmission optical waveguide, electrical feed-throughs, and/or other monitoring/controlling components may be provided with the micro-hermetic cavity on the same substrate, or as a separate component and/or on a separate substrate.
    Type: Application
    Filed: July 3, 2003
    Publication date: March 18, 2004
    Inventors: Albert M. Benzoni, Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20040052467
    Abstract: Formation of a substantially flat upper cladding surface over a waveguide core facilitates transverse-coupling between assembled waveguides, and/or provides mechanical alignment and/or support. An embedding medium may be employed for securing optical assemblies and protecting optical surfaces thereof. Structural elements fabricated with a low-profile core may be employed for providing mechanical alignment and/or support, aiding in the encapsulation process, and so forth.
    Type: Application
    Filed: June 27, 2003
    Publication date: March 18, 2004
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski, Guido Hunziker
  • Publication number: 20040037342
    Abstract: A grating-stabilized semiconductor laser comprises a semiconductor laser gain medium, an integrated low-index waveguide, and a waveguide grating segment providing optical feedback for laser oscillation. The laser may be adapted for multi-mode or single-mode operation. A multiple-mode laser may oscillate with reduced power and/or wavelength fluctuations associated with longitudinal mode wavelength shifts, relative to Fabry-Perot lasers lacking gratings. A single-mode laser may include a compensator, wavelength reference, and detector for generating an error signal, and a feedback mechanism for controlling the compensator for maintaining the laser wavelength locked to the reference. The laser may include means for altering, enhancing, tuning, and/or stabilizing the waveguide grating reflectivity spectral profile. The laser may be adapted for optical transverse-coupling to another waveguide.
    Type: Application
    Filed: July 30, 2003
    Publication date: February 26, 2004
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20030081902
    Abstract: An optical apparatus comprises an optical device fabricated on a substrate, an external-transfer optical waveguide fabricated on the substrate and/or on the optical device, and a transmission optical waveguide. The optical device and/or the external-transfer waveguide are adapted for and positioned for transfer of optical power therebetween (end-transfer or transverse-transfer). The external-transfer waveguide and/or the transmission waveguide are adapted for transverse-transfer of optical power therebetween (mode-interference-coupled or adiabatic). The transmission waveguide is initially provided as a component mechanically separate from the substrate, device, and external-transfer waveguide. Assembly of the transmission waveguide with the substrate, device, and/or external-transfer waveguide results in relative positioning of the external-transfer waveguide and the transmission waveguide for enabling transverse-transfer of optical power therebetween.
    Type: Application
    Filed: June 28, 2002
    Publication date: May 1, 2003
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 6549316
    Abstract: The quality of a multi-channel signal launched into an optical fiber may be degraded by active device distortion as well as non-linear fiber effects. Active device distortion in the form of clipping distortion and interferometric noise are reduced by a laser bias control circuit that does not require significant delay of the main RF signal. An information carrying signal, with periodic high amplitude peaks, drives the RF input of a laser as well as the input of a laser bias control circuit. The laser bias control circuit directly modulates the laser with a low frequency signal that is proportional to the frequency of occurrence and intensity of peaks in the information carrying signal that are likely to cause the laser to clip.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: April 15, 2003
    Assignees: Agere Systems, Inc., Emcure Corporation
    Inventor: Henry A. Blauvelt
  • Patent number: 6493132
    Abstract: The present invention, a monolithic, high power, single mode electro-optic device is disclosed. The electro-optic device generally includes an electrically pumped device with a pn junction and an optically pumped device evanescently coupled to the electrically pumped device. In operation the electrically pumped device is driven by an external source into a high energy state to emit photons at a first wavelength. The optically pumped device is at a low energy state so as to absorb the emitted photons and re-radiated light at a second wavelength.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: December 10, 2002
    Assignee: Agere Systems Guardian Corp.
    Inventors: Henry A. Blauvelt, Robert M. Lammert, Jeffrey E. Ungar
  • Publication number: 20020171919
    Abstract: The present invention, a monolithic, high power, single mode electro-optic device is disclosed. The electro-optic device generally includes an electrically pumped device with a pn junction and an optically pumped device evanescently coupled to the electrically pumped device. In operation the electrically pumped device is driven by an external source into a high energy state to emit photons at a first wavelength. The optically pumped device is at a low energy state so as to absorb the emitted photons and re-radiated light at a second wavelength.
    Type: Application
    Filed: February 14, 2001
    Publication date: November 21, 2002
    Inventors: Henry A. Blauvelt, Robert M. Lammert, Jeffrey E. Ungar
  • Publication number: 20020063930
    Abstract: The quality of a multi-channel signal launched into an optical fiber may be degraded by active device distortion as well as non-linear fiber effects. Active device distortion in the form of clipping distortion and interferometric noise are reduced by a laser bias control circuit that does not require significant delay of the main RF signal. An information carrying signal, with periodic high amplitude peaks, drives the RF input of a laser as well as the input of a laser bias control circuit. The laser bias control circuit directly modulates the laser with a low frequency signal that is proportional to the frequency of occurrence and intensity of peaks in the information carrying signal that are likely to cause the laser to clip.
    Type: Application
    Filed: December 15, 1999
    Publication date: May 30, 2002
    Inventor: HENRY A. BLAUVELT
  • Patent number: 6392779
    Abstract: A bias control system is adapted to reduce composite second order distortions in an electro-optic modulator. The bias control system includes a pilot tone generator that generates a first pilot tone at a first frequency and a second pilot tone at a second frequency. The first and second tones are swept in frequency over a predetermined frequency range with a predetermined sweep rate, to spectrally spread third order distortion products over a larger frequency band, allowing the amplitude of the pilot tones to be increased, thereby increasing the gain of the bias control circuit.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: May 21, 2002
    Assignee: Agere Systems Guardian Corp.
    Inventors: John Iannelli, Henry A. Blauvelt
  • Patent number: 6288814
    Abstract: An electronic circuit provides a substantially linear output from a nonlinear transmission device such as a laser. The input signal to the nonlinear device is applied to an in-line electrical path coupled to the nonlinear device. In the in-line predistorter of the present invention, the desired real and imaginary distortion terms may be synthesized by summing the distortion contributions from several different distorter elements. In the simplest case, one distorter produces a constant real distortion, another produces distortion proportional to frequency, f, and so on. However, it is not essential to have the simplest set of distorters. Distorters with more complex distortion characteristics can be used so long as they provide an independent set. A number of circuits are disclosed that can be combined to provide the building blocks of an in-line circuit.
    Type: Grant
    Filed: August 25, 1998
    Date of Patent: September 11, 2001
    Assignee: Ortel Corporation
    Inventor: Henry A. Blauvelt
  • Patent number: 6252693
    Abstract: Nonlinear optical effects, such as stimulated Brillouin scattering, limit the power density of an optical signal that can be launched into an optical fiber. The SBS threshold is increased by a triple frequency modulation scheme, wherein an optical source is modulated by a low frequency sinusoid, e.g., 10-100 kHz, as well as an amplitude modulated high frequency signal, e.g. 6 GHz. In addition, the optical beam is externally phase modulated at a frequency which is not less than twice the frequency of the highest signal frequency being transmitted by the fiber, e.g. 2 GHz for a CATV transmission.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: June 26, 2001
    Assignee: Ortel Corporation
    Inventor: Henry A. Blauvelt
  • Patent number: 5798854
    Abstract: An electronic circuit provides a linear output from a nonlinear transmission device such as a laser. Second and higher order distortion of the nonlinear device is compensated by applying a predistorted signal equal in magnitude and opposite in sign to the real and imaginary components of distortion produced by the nonlinear device. The input signal for the nonlinear device is applied to an in-line electrical path coupled to the nonlinear device. The in-line path contains at least one component for generating primarily real components of distortion. In some applications, at least one component for generating imaginary components of distortion is located on the in-line path. Filter stages are used to provide frequency dependent predistortion. In a preferred embodiment, an attenuator, a MMIC amplifier, a CATV hybrid amplifier, and a varactor in line with a semiconductor laser, provide the predistorted signal.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: August 25, 1998
    Assignee: Ortel Corporation
    Inventors: Henry A. Blauvelt, Martin Regehr