Patents by Inventor Henry K. Utomo

Henry K. Utomo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230180487
    Abstract: A method of fabricating a resistive semiconductor memory structure that provides in-situ selective etch of phase change materials during deposition of dielectric at low temperature (in the same chamber). The method provides, to a single processing chamber, a semiconductor wafer including a trimmed resistive memory device structure having one or more layers of phase change material used to form a resistive memory device. The one or more layers of phase change material have oxidized sidewall surfaces as a result of a prior etching step where a whole stack structure of the layers forming the resistive memory structure is etched. Then, an encapsulating of the trimmed resistive memory device structure is performed by depositing, within the processing chamber, using a PECVD, a layer of dielectric material, and during the encapsulating, etching, within the processing chamber, the wafer to selectively remove the phase change material oxidation at the sidewall surfaces.
    Type: Application
    Filed: December 8, 2021
    Publication date: June 8, 2023
    Inventors: Luxherta Buzi, HIROYUKI MIYAZOE, Henry K. Utomo, Matthew Peter Sagianis
  • Patent number: 11150168
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: October 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Patent number: 11081583
    Abstract: A device and method for forming a semiconductor device includes forming a gate structure on a channel region of fin structures and forming a flowable dielectric material on a source region portion and a drain region portion of the fin structures. The flowable dielectric material is present at least between adjacent fin structures of the plurality of fin structures filling a space between the adjacent fin structures. An upper surface of the source region portion and the drain region portion of fin structures is exposed. An epitaxial semiconductor material is formed on the upper surface of the source region portion and the drain region portion of the fin structures.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: August 3, 2021
    Assignee: International Business Machines Corporation
    Inventors: Eric C. Harley, Judson R. Holt, Yue Ke, Rishikesh Krishnan, Keith H. Tabakman, Henry K. Utomo
  • Patent number: 11060960
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: July 13, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Patent number: 10896976
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, Reinaldo Ariel Vega
  • Patent number: 10777735
    Abstract: Back end of line (BEOL) metallization structures and methods generally includes forming a landing pad on an interconnect structure. A multilayer structure including layers of metals and at least one insulating layer are provided on the structure and completely cover the landing pad. The landing pad is a metal-filled via and has a width dimension that is smaller than the multilayer structure, or the multilayer structure and the underlying metal conductor in the interconnect structure. The landing pad metal-filled via can have a width dimension that is sub-lithographic.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: September 15, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Daniel C. Edelstein, Bruce B. Doris, Henry K. Utomo, Theodorus E. Standaert, Nathan P. Marchack
  • Patent number: 10686124
    Abstract: Back end of line (BEOL) metallization structures and methods generally includes forming a landing pad on an interconnect structure. A multilayer structure including layers of metals and at least one insulating layer are provided on the structure and completely cover the landing pad. The landing pad is a metal-filled via and has a width dimension that is smaller than the multilayer structure, or the multilayer structure and the underlying metal conductor in the interconnect structure. The landing pad metal-filled via can have a width dimension that is sub-lithographic.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 16, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Daniel C. Edelstein, Bruce B. Doris, Henry K. Utomo, Theodorus E. Standaert, Nathan P. Marchack
  • Publication number: 20200141845
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Patent number: 10615279
    Abstract: A method forming a semiconductor device that in one embodiment includes forming a gate structure on a channel region of fin structures, and forming a flowable dielectric material on a source region portion and a drain region portion of the fin structures. The flowable dielectric material is present at least between adjacent fin structures of the plurality of fin structures filling a space between the adjacent fin structures. An upper surface of the source region portion and the drain region portion of fin structures is exposed. An epitaxial semiconductor material is formed on the upper surface of the source region portion and the drain region portion of the fin structures.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric C. Harley, Judson R. Holt, Yue Ke, Rishikesh Krishnan, Keith H. Tabakman, Henry K. Utomo
  • Publication number: 20200083436
    Abstract: Back end of line (BEOL) metallization structures and methods generally includes forming a landing pad on an interconnect structure. A multilayer structure including layers of metals and at least one insulating layer are provided on the structure and completely cover the landing pad. The landing pad is a metal-filled via and has a width dimension that is smaller than the multilayer structure, or the multilayer structure and the underlying metal conductor in the interconnect structure. The landing pad metal-filled via can have a width dimension that is sub-lithographic.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: Chih-Chao YANG, Daniel C. EDELSTEIN, Bruce B. DORIS, Henry K. UTOMO, Theodorus E. STANDAERT, Nathan P. MARCHACK
  • Publication number: 20200083426
    Abstract: Back end of line (BEOL) metallization structures and methods generally includes forming a landing pad on an interconnect structure. A multilayer structure including layers of metals and at least one insulating layer are provided on the structure and completely cover the landing pad. The landing pad is a metal-filled via and has a width dimension that is smaller than the multilayer structure, or the multilayer structure and the underlying metal conductor in the interconnect structure. The landing pad metal-filled via can have a width dimension that is sub-lithographic.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Chih-Chao YANG, Daniel C. EDELSTEIN, Bruce B. DORIS, Henry K. UTOMO, Theodorus E. STANDAERT, Nathan P. MARCHACK
  • Patent number: 10586921
    Abstract: A method of forming a semiconductor structure includes forming two or more pillar structures over a top surface of a substrate. The method also includes forming two or more contacts to the two or more pillar structures. The method further includes forming an insulator between the two or more pillar structures and the two or more contacts. The two or more contacts are self-aligned to the two or more pillar structures by forming the insulator via conformal deposition and etching the insulator selective to a spin-on material formed over the insulator between the two or more pillar structures.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: March 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Anthony J. Annunziata, Daniel C. Edelstein, Eugene J. O'Sullivan, Henry K. Utomo
  • Patent number: 10586920
    Abstract: A semiconductor structure is disclosed herein. The semiconductor structure includes two or more pillar structures disposed over a top surface of a substrate. The semiconductor structure further includes two or more contacts to the two or more pillar structures. The semiconductor structure further includes an insulator disposed between the two or more pillar structures and the two or more contacts. The two or more contacts are self-aligned to the two or more pillar structures.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: March 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Anthony J. Annunziata, Daniel C. Edelstein, Eugene J. O'Sullivan, Henry K. Utomo
  • Publication number: 20200066908
    Abstract: A device and method for forming a semiconductor device includes forming a gate structure on a channel region of fin structures and forming a flowable dielectric material on a source region portion and a drain region portion of the fin structures. The flowable dielectric material is present at least between adjacent fin structures of the plurality of fin structures filling a space between the adjacent fin structures. An upper surface of the source region portion and the drain region portion of fin structures is exposed. An epitaxial semiconductor material is formed on the upper surface of the source region portion and the drain region portion of the fin structures.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: ERIC C. HARLEY, JUDSON R. HOLT, YUE KE, RISHIKESH KRISHNAN, KEITH H. TABAKMAN, HENRY K. UTOMO
  • Patent number: 10559690
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: February 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, Reinaldo Ariel Vega
  • Patent number: 10557779
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: February 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Publication number: 20190371941
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, REINALDO ARIEL VEGA
  • Publication number: 20190310171
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 10, 2019
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Patent number: 10393635
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Publication number: 20190252548
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Application
    Filed: August 9, 2017
    Publication date: August 15, 2019
    Applicant: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, Reinaldo Ariel Vega