Patents by Inventor Henry K. Utomo

Henry K. Utomo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10246730
    Abstract: A method includes disposing a solution including a microbe or a virion on a surface of a semiconductor substrate, the semiconductor substrate having a trench extending from the surface to a region within the semiconductor substrate; wherein the the microbe or the virion is trapped within the trench of the semiconductor substrate.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: April 2, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Patent number: 10242980
    Abstract: A bulk semiconductor substrate including a first semiconductor material is provided. A well trapping layer including a second semiconductor material and a dopant is formed on a top surface of the bulk semiconductor substrate. The combination of the second semiconductor material and the dopant within the well trapping layer is selected such that diffusion of the dopant is limited within the well trapping layer. A device semiconductor material layer including a third semiconductor material can be epitaxially grown on the top surface of the well trapping layer. The device semiconductor material layer, the well trapping layer, and an upper portion of the bulk semiconductor substrate are patterned to form at least one semiconductor fin. Semiconductor devices formed in each semiconductor fin can be electrically isolated from the bulk semiconductor substrate by the remaining portions of the well trapping layer.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Henry K. Utomo, Kangguo Cheng, Ramachandra Divakaruni, Ravikumar Ramachandran, Huiling Shang, Reinaldo A. Vega
  • Patent number: 10243077
    Abstract: A method forming a semiconductor device that in one embodiment includes forming a gate structure on a channel region of fin structures, and forming a flowable dielectric material on a source region portion and a drain region portion of the fin structures. The flowable dielectric material is present at least between adjacent fin structures of the plurality of fin structures filling a space between the adjacent fin structures. An upper surface of the source region portion and the drain region portion of fin structures is exposed. An epitaxial semiconductor material is formed on the upper surface of the source region portion and the drain region portion of the fin structures.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: March 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric C. Harley, Judson R. Holt, Yue Ke, Rishikesh Krishnan, Keith H. Tabakman, Henry K. Utomo
  • Publication number: 20190051751
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Application
    Filed: August 9, 2017
    Publication date: February 14, 2019
    Applicant: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, Reinaldo Ariel Vega
  • Publication number: 20180308898
    Abstract: A method of forming a semiconductor structure includes forming two or more pillar structures over a top surface of a substrate. The method also includes forming two or more contacts to the two or more pillar structures. The method further includes forming an insulator between the two or more pillar structures and the two or more contacts. The two or more contacts are self-aligned to the two or more pillar structures by forming the insulator via conformal deposition and etching the insulator selective to a spin-on material formed over the insulator between the two or more pillar structures.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Anthony J. Annunziata, Daniel C. Edelstein, Eugene J. O'Sullivan, Henry K. Utomo
  • Publication number: 20180308897
    Abstract: A semiconductor structure. The semiconductor structure includes two or more pillar structures disposed over a top surface of a substrate. The semiconductor structure further includes two or more contacts to the two or more pillar structures. The semiconductor structure further includes an insulator disposed between the two or more pillar structures and the two or more contacts. The two or more contacts are self-aligned to the two or more pillar structures.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Anthony J. Annunziata, Daniel C. Edelstein, Eugene J. O'Sullivan, Henry K. Utomo
  • Patent number: 10109675
    Abstract: A method of forming a semiconductor structure includes forming two or more pillar structures over a top surface of a substrate. The method also includes forming two or more contacts to the two or more pillar structures. The method further includes forming an insulator between the two or more pillar structures and the two or more contacts. The two or more contacts are self-aligned to the two or more pillar structures by forming the insulator via conformal deposition and etching the insulator selective to a spin-on material formed over the insulator between the two or more pillar structures.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: October 23, 2018
    Assignee: International Business Machines Corporation
    Inventors: Anthony J. Annunziata, Daniel C. Edelstein, Eugene J. O'Sullivan, Henry K. Utomo
  • Publication number: 20180261649
    Abstract: A method of forming a semiconductor structure includes forming two or more pillar structures over a top surface of a substrate. The method also includes forming two or more contacts to the two or more pillar structures. The method further includes forming an insulator between the two or more pillar structures and the two or more contacts. The two or more contacts are self-aligned to the two or more pillar structures by forming the insulator via conformal deposition and etching the insulator selective to a spin-on material formed over the insulator between the two or more pillar structures.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 13, 2018
    Inventors: Anthony J. Annunziata, Daniel C. Edelstein, Eugene J. O'Sullivan, Henry K. Utomo
  • Patent number: 10049942
    Abstract: An aspect of the disclosure provides for an asymmetric semiconductor device. The asymmetric semiconductor device may comprise: a substrate; and a fin-shaped field effect transistor (FINFET) disposed on the substrate, the FINFET including: a set of fins disposed proximate a gate; a first epitaxial region disposed on a source region on the set of fins, the first epitaxial region having a first height; and a second epitaxial region disposed on a drain region on the set of fins, the second epitaxial region having a second height, wherein the first height is distinct from the second height.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 14, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Anthony I. Chou, Judson R. Holt, Arvind Kumar, Henry K. Utomo
  • Publication number: 20180097113
    Abstract: A method forming a semiconductor device that in one embodiment includes forming a gate structure on a channel region of fin structures, and forming a flowable dielectric material on a source region portion and a drain region portion of the fin structures. The flowable dielectric material is present at least between adjacent fin structures of the plurality of fin structures filling a space between the adjacent fin structures. An upper surface of the source region portion and the drain region portion of fin structures is exposed. An epitaxial semiconductor material is formed on the upper surface of the source region portion and the drain region portion of the fin structures.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Inventors: ERIC C. HARLEY, JUDSON R. HOLT, YUE KE, RISHIKESH KRISHNAN, KEITH H. TABAKMAN, HENRY K. UTOMO
  • Patent number: 9923082
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a partially depleted semiconductor-on-insulator (SOI) junction isolation structure using a nonuniform trench shape formed by reactive ion etching (RIE) and crystallographic wet etching. The nonuniform trench shape may reduce back channel leakage by providing an effective channel directly below a gate stack having a width that is less than a width of an effective back channel directly above the isolation layer.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: March 20, 2018
    Assignee: GLOBAL FOUNDRIES INC.
    Inventors: Anthony I. Chou, Judson R. Holt, Arvind Kumar, Henry K. Utomo
  • Patent number: 9917190
    Abstract: A method forming a semiconductor device that in one embodiment includes forming a gate structure on a channel region of fin structures, and forming a flowable dielectric material on a source region portion and a drain region portion of the fin structures. The flowable dielectric material is present at least between adjacent fin structures of the plurality of fin structures filling a space between the adjacent fin structures. An upper surface of the source region portion and the drain region portion of fin structures is exposed. An epitaxial semiconductor material is formed on the upper surface of the source region portion and the drain region portion of the fin structures.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: March 13, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric C. Harley, Judson R. Holt, Yue Ke, Rishikesh Krishnan, Keith H. Tabakman, Henry K. Utomo
  • Patent number: 9905694
    Abstract: Device structures for a fin-type field-effect transistor (FinFET) and methods for fabricating a device structure for a FinFET. A fin comprised of a semiconductor material having a first crystal structure is formed. A dielectric layer is formed that includes an opening aligned with the fin. A dummy gate structure is removed from the opening in the dielectric layer. After the dummy gate structure is removed, a section of the fin aligned with the opening is implanted with non-dopant ions to amorphize the first crystal structure of the semiconductor material of the fin. After the section of the fin is implanted, the section of the fin is annealed such that the semiconductor material in the section of the fin recrystallizes with a second crystal structure incorporating internal strain.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: February 27, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Henry K. Utomo, Reinaldo A. Vega, Yun Y. Wang
  • Publication number: 20180026137
    Abstract: Device structures for a fin-type field-effect transistor (FinFET) and methods for fabricating a device structure for a FinFET. A fin comprised of a semiconductor material having a first crystal structure is formed. A dielectric layer is formed that includes an opening aligned with the fin. A dummy gate structure is removed from the opening in the dielectric layer. After the dummy gate structure is removed, a section of the fin aligned with the opening is implanted with non-dopant ions to amorphize the first crystal structure of the semiconductor material of the fin. After the section of the fin is implanted, the section of the fin is annealed such that the semiconductor material in the section of the fin recrystallizes with a second crystal structure incorporating internal strain.
    Type: Application
    Filed: March 13, 2017
    Publication date: January 25, 2018
    Inventors: Henry K. Utomo, Reinaldo A. Vega, Yun Y. Wang
  • Patent number: 9875939
    Abstract: Methods of fabricating integrated circuit devices for forming uniform and well controlled fin recesses are disclosed. One method includes, for instance: obtaining an intermediate semiconductor structure having a substrate, at least one fin disposed on the substrate, at least one gate structure positioned over the at least one fin, and at least one oxide layer disposed on the substrate and about the at least one fin and the at least one gate structure; implanting germanium (Ge) in a first region of the at least one fin; and removing the first region of the at least one fin implanted with Ge.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: January 23, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Yue Ke, Alexander Reznicek, Benjamin Moser, Dominic J. Schepis, Melissa A. Smith, Henry K. Utomo, Reinaldo Vega, Sameer Jain
  • Patent number: 9818877
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: November 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, Reinaldo Ariel Vega
  • Publication number: 20170191106
    Abstract: A method includes disposing a solution including a microbe or a virion on a surface of a semiconductor substrate, the semiconductor substrate having a trench extending from the surface to a region within the semiconductor substrate; wherein the the microbe or the virion is trapped within the trench of the semiconductor substrate.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 6, 2017
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Publication number: 20170189570
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Application
    Filed: April 29, 2016
    Publication date: July 6, 2017
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Publication number: 20170191913
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Application
    Filed: April 29, 2016
    Publication date: July 6, 2017
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Publication number: 20170191912
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 6, 2017
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo