Patents by Inventor Henry Snaith

Henry Snaith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908962
    Abstract: The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: February 20, 2024
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee
  • Publication number: 20230223205
    Abstract: A multi-junction photovoltaic device comprising a layer of metal oxynitride between a first sub-cell and a second sub-cell is disclosed, the first sub-cell having a layer comprising a perovskite light absorber material. In addition, a method of manufacturing said multi junction photovoltaic device is disclosed. The metal oxynitride is preferably titanium oxynitride. Advantageously, the device may be produced in a simple, fast, consistent and inexpensive manner, whilst the properties of the titanium oxynitride layer may be tuned to avoid the occurrence of local shunt paths and to reduce reflection losses.
    Type: Application
    Filed: June 17, 2021
    Publication date: July 13, 2023
    Inventors: Simon KIRNER, Laura MIRANDA PEREZ, Immo KOETSCHAU, Henry SNAITH, Edward CROSSLAND, Christopher CASE, Alan SHARP
  • Publication number: 20220285568
    Abstract: The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 8, 2022
    Inventors: HENRY SNAITH, MICHAEL LEE
  • Publication number: 20220263037
    Abstract: The invention provides an optoelectronic device comprising a mixed-anion perovskite, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention further provides a mixed-halide perovskite of the formula (I) [A][B][X]3 wherein: [A] is at least one organic cation; [B] is at least one divalent metal cation; and [X] is said two or more different halide anions. In another aspect, the invention provides the use of a mixed-anion perovskite as a sensitizer in an optoelectronic device, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention also provides a photosensitizing material for an optoelectronic device comprising a mixed-anion perovskite wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions.
    Type: Application
    Filed: May 3, 2022
    Publication date: August 18, 2022
    Inventors: Henry SNAITH, Michael LEE, Takuro MURAKAMI
  • Publication number: 20220262963
    Abstract: The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device.
    Type: Application
    Filed: March 7, 2022
    Publication date: August 18, 2022
    Inventors: HENRY SNAITH, MICHAEL LEE
  • Publication number: 20220231243
    Abstract: The invention provides an optoelectronic device comprising a mixed-anion perovskite, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention further provides a mixed-halide perovskite of the formula (I) [A][B][X]3 wherein: [A] is at least one organic cation; [B] is at least one divalent metal cation; and [X] is said two or more different halide anions. In another aspect, the invention provides the use of a mixed-anion perovskite as a sensitizer in an optoelectronic device, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention also provides a photosensitizing material for an optoelectronic device comprising a mixed-anion perovskite wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions.
    Type: Application
    Filed: December 29, 2021
    Publication date: July 21, 2022
    Inventors: Henry SNAITH, Michael LEE, Takuro MURAKAMI
  • Patent number: 11302833
    Abstract: The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: April 12, 2022
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee
  • Patent number: 11276734
    Abstract: The invention provides an optoelectronic device comprising: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material. Typically the semiconductor, which may be a perovskite, is disposed on the surface of the porous dielectric scaffold material, so that it is supported on the surfaces of pores within the scaffold. In one embodiment, the optoelectronic device is an optoelectronic device which comprises a photoactive layer, wherein the photo-active layer comprises: (a) said porous dielectric scaffold material; (b) said semiconductor; and (c) a charge transporting material. The invention further provides the use, as a photoactive material in an optoelectronic device, of: (i) a porous dielectric scaffold material; and (ii) a semi-conductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: March 15, 2022
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee
  • Patent number: 11258025
    Abstract: A solid state light-emitting device comprising: a first electrode coupled to a first charge injecting layer; a second electrode coupled to a second charge injecting layer; an emissive layer comprising a perovskite material, wherein the emissive layer is provided between the first and second charge injecting layers; and wherein the bandgaps of the first and second charge injecting layers are larger than the bandgap of the emissive perovskite layer.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: February 22, 2022
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Richard Henry Friend, Reza Saberi Moghaddam, Zhi Kuang Tan, Aditya Sadhanala, May Ling Lai, Pablo Docampo, Felix Deschler, Michael Price, Fabian Hanusch, Henry Snaith
  • Patent number: 11258024
    Abstract: The invention provides an optoelectronic device comprising a mixed-anion perovskite, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention further provides a mixed-halide perovskite of the formula (I) [A][B][X]3 wherein: [A] is at least one organic cation; [B] is at least one divalent metal cation; and [X] is said two or more different halide anions. In another aspect, the invention provides the use of a mixed-anion perovskite as a sensitizer in an optoelectronic device, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention also provides a photosensitizing material for an optoelectronic device comprising a mixed-anion perovskite wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: February 22, 2022
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee, Takuro Murakami
  • Patent number: 11038132
    Abstract: The invention provides an optoelectronic device comprising a mixed-anion perovskite, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention further provides a mixed halide perovskite of the formula (I) [A][B][X]3 wherein: [A] is at least one organic cation; [B] is at least one divalent metal cation; and [X] is said two or more different halide anions. In another aspect, the invention provides the use of a mixed-anion perovskite as a sensitizer in an optoelectronic device, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention also provides a photosensitizing material for an optoelectronic device comprising a mixed-anion perovskite wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: June 15, 2021
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee, Takuro Murakami
  • Publication number: 20190348622
    Abstract: The invention provides an optoelectronic device comprising: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material. Typically the semiconductor, which may be a perovskite, is disposed on the surface of the porous dielectric scaffold material, so that it is supported on the surfaces of pores within the scaffold. hi one embodiment, the optoelectronic device is an optoelectronic device which comprises a photoactive layer, wherein the photo-active layer comprises: (a) said porous dielectric scaffold material; (b) said semiconductor; and (c) a charge transporting material. The invention further provides the use, as a photoactive material in an optoelectronic device, of: (i) a porous dielectric scaffold material; and (ii) a semi-conductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material.
    Type: Application
    Filed: July 1, 2019
    Publication date: November 14, 2019
    Inventors: Henry SNAITH, Michael LEE
  • Patent number: 10388897
    Abstract: The invention provides an optoelectronic device comprising: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material. Typically the semiconductor, which may be a perovskite, is disposed on the surface of the porous dielectric scaffold material, so that it is supported on the surfaces of pores within the scaffold. In one embodiment, the optoelectronic device is an optoelectronic device which comprises a photoactive layer, wherein the photoactive layer comprises: (a) said porous dielectric scaffold material; (b) said semiconductor; and (c) a charge transporting material. The invention further provides the use, as a photoactive material in an optoelectronic device, of: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: August 20, 2019
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee
  • Patent number: 10374181
    Abstract: The invention relates to processes for producing semi-transparent photoactive layers, and devices comprising the same. The invention provides a process for producing a semi-transparent photoactive layer comprising: a) disposing on a substrate a composition, which composition comprises a photoactive material or one or more precursors of a photoactive material, to form a resulting layer; and b) dewetting the resulting layer to form a dewet layer of the photoactive material, wherein the dewet layer of the photoactive material is semi-transparent. The invention also provides a semi-transparent photoactive layer comprising a substrate and, disposed on the substrate, a dewet layer of a photoactive material, wherein the dewet layer of a photoactive material comprises a plurality of absorbing regions which comprise the photoactive material and a plurality of transparent regions which do not substantially comprise the photoactive material.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: August 6, 2019
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Victor Burlakov, James Ball, Giles Eperon, Alain Goriely
  • Publication number: 20180351009
    Abstract: The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Inventors: HENRY SNAITH, MICHAEL LEE
  • Patent number: 10079320
    Abstract: The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: September 18, 2018
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee
  • Patent number: 9929343
    Abstract: The present invention relates to the doping of organic semiconductors and processes for producing layers of p-doped organic semiconductors. Disclosed is a process for p-doping organic semiconductors comprising treating the organic semiconductor with an oxidized salt of the organic semiconductor. A process for producing a layer of a p-doped organic semiconductor comprising producing a p-doped organic semiconductor by treating the organic semiconductor with an oxidized salt of the organic semiconductor; disposing a composition comprising a solvent and the p-doped organic semiconductor on a substrate; and removing the solvent is also described. Also disclosed is a process for producing a layer of a p-doped organic semiconductor comprising: disposing a composition comprising a solvent, the organic semiconductor and a protic ionic liquid on a substrate; and removing the solvent.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: March 27, 2018
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Tomas Leijtens, Antonio Abate, Alan Sellinger
  • Publication number: 20180083213
    Abstract: The invention provides an optoelectronic device comprising a mixed-anion perovskite, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention further provides a mixed-halide perovskite of the formula (I) [A][B][X]3 wherein: [A] is at least one organic cation; [B] is at least one divalent metal cation; and [X] is said two or more different halide anions. In another aspect, the invention provides the use of a mixed-anion perovskite as a sensitizer in an optoelectronic device, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention also provides a photosensitizing material for an optoelectronic device comprising a mixed-anion perovskite wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions.
    Type: Application
    Filed: November 28, 2017
    Publication date: March 22, 2018
    Inventors: Henry SNAITH, Michael LEE, Takuro MURAKAMI
  • Patent number: 9818944
    Abstract: The present invention relates to the doping of organic semiconductors and processes for producing layers of p-doped organic semiconductors. Disclosed is a process for p-doping organic semiconductors comprising treating the organic semiconductor with an oxidized salt of the organic semiconductor. A process for producing a layer of a p-doped organic semiconductor comprising producing a p-doped organic semiconductor by treating the organic semiconductor with an oxidized salt of the organic semiconductor; disposing a composition comprising a solvent and the p-doped organic semiconductor on a substrate; and removing the solvent is also described. Also disclosed is a process for producing a layer of a p-doped organic semiconductor comprising: disposing a composition comprising a solvent, the organic semiconductor and a protic ionic liquid on a substrate; and removing the solvent.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: November 14, 2017
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Tomas Leijtens, Antonio Abate, Alan Sellinger
  • Publication number: 20170054099
    Abstract: A solid state light-emitting device comprising: a first electrode coupled to a first charge injecting layer; a second electrode coupled to a second charge injecting layer; an emissive layer comprising a perovskite material, wherein the emissive layer is provided between the first and second charge injecting layers; and wherein the bandgaps of the first and second charge injecting layers are larger than the bandgap of the emissive perovskite layer.
    Type: Application
    Filed: April 29, 2015
    Publication date: February 23, 2017
    Inventors: Richard Henry Friend, Reza Saberi Moghaddam, Zhi Kuang Tan, Aditya Sadhanala, May Ling Lai, Pablo Docampos, Felix Deschler, Michael Price, Fabian Hanusch, Henry Snaith