Patents by Inventor Henry Snaith

Henry Snaith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160240781
    Abstract: The present invention relates to the doping of organic semiconductors and processes for producing layers of p-doped organic semiconductors. Disclosed is a process for p-doping organic semiconductors comprising treating the organic semiconductor with an oxidised salt of the organic semiconductor. A process for producing a layer of a p-doped organic semiconductor comprising producing a p-doped organic semiconductor by treating the organic semiconductor with an oxidised salt of the organic semiconductor; disposing a composition comprising a solvent and the p-doped organic semiconductor on a substrate; and removing the solvent is also described. Also disclosed is a process for producing a layer of a p-doped organic semiconductor comprising: disposing a composition comprising a solvent, the organic semiconductor and a protic ionic liquid on a substrate; and removing the solvent.
    Type: Application
    Filed: April 19, 2016
    Publication date: August 18, 2016
    Inventors: Henry SNAITH, Tomas LEIJTENS, Antonio ABATE, Alan SELLINGER
  • Publication number: 20160141535
    Abstract: The invention relates to processes for producing semi-transparent photoactive layers, and devices comprising the same. The invention provides a process for producing a semi-transparent photoactive layer comprising: a) disposing on a substrate a composition, which composition comprises a photoactive material or one or more precursors of a photoactive material, to form a resulting layer; and b) dewetting the resulting layer to form a dewet layer of the photoactive material, wherein the dewet layer of the photoactive material is semi-transparent. The invention also provides a semi-transparent photoactive layer comprising a substrate and, disposed on the substrate, a dewet layer of a photoactive material, wherein the dewet layer of a photoactive material comprises a plurality of absorbing regions which comprise the photoactive material and a plurality of transparent regions which do not substantially comprise the photoactive material.
    Type: Application
    Filed: June 17, 2014
    Publication date: May 19, 2016
    Inventors: Henry SNAITH, Victor BURLAKOV, James BALL, Giles EPERON, Alain GORIELY
  • Publication number: 20160126020
    Abstract: The present invention relates to the doping of organic semiconductors and processes for producing layers of p-doped organic semiconductors. Disclosed is a process for p-doping organic semiconductors comprising treating the organic semiconductor with an oxidised salt of the organic semiconductor. A process for producing a layer of a p-doped organic semiconductor comprising producing a p-doped organic semiconductor by treating the organic semiconductor with an oxidised salt of the organic semiconductor; disposing a composition comprising a solvent and the p-doped organic semiconductor on a substrate; and removing the solvent is also described. Also disclosed is a process for producing a layer of a p-doped organic semiconductor comprising: disposing a composition comprising a solvent, the organic semiconductor and a protic ionic liquid on a substrate; and removing the solvent.
    Type: Application
    Filed: May 30, 2014
    Publication date: May 5, 2016
    Inventors: Henry SNAITH, Tomas LEIJTENS, Antonio ABATE, Alan SELLINGER
  • Publication number: 20150136232
    Abstract: The invention provides an optoelectronic device comprising a mixed-anion perovskite, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention further provides a mixed halide perovskite of the formula (I) [A][B][X]3 wherein: [A] is at least one organic cation; [B] is at least one divalent metal cation; and [X] is said two or more different halide anions. In another aspect, the invention provides the use of a mixed-anion perovskite as a sensitizer in an optoelectronic device, wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions. The invention also provides a photosensitizing material for an optoelectronic device comprising a mixed-anion perovskite wherein the mixed-anion perovskite comprises two or more different anions selected from halide anions and chalcogenide anions.
    Type: Application
    Filed: May 20, 2013
    Publication date: May 21, 2015
    Applicant: ISIS INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee, Takuro Murakami
  • Publication number: 20150129034
    Abstract: The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device.
    Type: Application
    Filed: May 20, 2013
    Publication date: May 14, 2015
    Applicant: ISIS INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee
  • Publication number: 20150122314
    Abstract: The invention provides an optoelectronic device comprising: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material. Typically the semiconductor, which may be a perovskite, is disposed on the surface of the porous dielectric scaffold material, so that it is supported on the surfaces of pores within the scaffold. In one embodiment, the optoelectronic device is an optoelectronic device which comprises a photoactive layer, wherein the photoactive layer comprises: (a) said porous dielectric scaffold material; (b) said semiconductor; and (c) a charge transporting material. The invention further provides the use, as a photoactive material in an optoelectronic device, of: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material.
    Type: Application
    Filed: May 20, 2013
    Publication date: May 7, 2015
    Inventors: Henry Snaith, Michael Lee
  • Patent number: 8546791
    Abstract: A light emissive or photovoltaic device comprising: a cathode structure for injecting electrons, the cathode structure having one or more constituent regions; an anode structure for injecting holes, the anode structure having one or more constituent regions; and an organic light emissive component located between the anode structure and the cathode structure; the refractive indices and the thicknesses of the or each constituent region of the cathode and anode structures and of the light emissive component being such that the emission or absorption spectrum of the device is substantially angularly dependent.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: October 1, 2013
    Assignee: Cambridge Enterprise Limited
    Inventors: Richard Henry Friend, Dinesh Kabra, Bernard Wenger, Henry Snaith, Myoung Hoon Song
  • Publication number: 20130199603
    Abstract: The invention provides a solid-state p-n heterojunction comprising an organic p-type material in contact with an n-type material wherein said heterojunction is sensitised by at least one sensitizing agent, characterised in that the device comprises a cathode separated from said n-type material by a porous barrier layer of at least one insulating material. Also provided are opto-electronic devices such as solar cells or photo-sensors comprising such a p-n heterojunction, and methods for the manufacture of such a heterojunction or device.
    Type: Application
    Filed: March 11, 2011
    Publication date: August 8, 2013
    Applicant: ISIS INNOVATION LIMITED
    Inventors: Henry Snaith, Pablo Docampo
  • Publication number: 20130069043
    Abstract: An electro optic device comprising a first electrode and a second electrode and an emissive layer located between the first and second electrodes, the emissive layer comprising a polymeric semiconductor, or semiconducting and luminescent material having a thickness of 200 nm to 3000 nm.
    Type: Application
    Filed: January 12, 2011
    Publication date: March 21, 2013
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Richard H. Friend, Henry Snaith, Dinesh Kabra, Myoung Hoon Song, Li Ping Lu
  • Publication number: 20110140091
    Abstract: A light emissive or photovoltaic device comprising: a cathode structure for injecting electrons, the cathode structure having one or more constituent regions; an anode structure for injecting holes, the anode structure having one or more constituent regions; and an organic light emissive component located between the anode structure and the cathode structure; the refractive indices and the thicknesses of the or each constituent region of the cathode and anode structures and of the light emissive component being such that the emission or absorption spectrum of the device is substantially angularly dependent.
    Type: Application
    Filed: June 18, 2009
    Publication date: June 16, 2011
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Richard H. Friend, Dinesh Kabra, Bernard Wenger, Henry Snaith, Myoung Hoon Song
  • Publication number: 20070169814
    Abstract: An organic electronic device comprises at least two electrodes and a semiconducting layer comprising a mixture of at least one hole-transporting semiconducting material and at least one electron-transporting semiconducting material, wherein at least one of said semiconducting materials is in the form of semiconducting polymer brushes which are attached to the surface of at least one of said electrodes and are in contact with at least one of said other semiconducting materials. Also provided is an organic electronic device comprising at least two electrodes and a semiconducting layer comprising at least one hole-transporting or electron-transporting semiconducting material, wherein said at least one semiconducting material is in the form of semiconducting polymer brushes which are attached to the surface of at least one of said electrodes. Processes for the manufacture of said devices are also provided.
    Type: Application
    Filed: April 21, 2004
    Publication date: July 26, 2007
    Inventors: Wilhelm Huck, Gregory Whiting, Richard Friend, Henry Snaith