Patents by Inventor Hideaki Horie

Hideaki Horie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220336842
    Abstract: There is provided a constitution in which a state of an assembled battery can be managed while eliminating the need for connecting an electrical wire. There is provided a lithium ion battery module having a control unit that is configured to receive a characteristic signal representing a characteristic of a corresponding unit cell and to output a control signal obtained by encoding an identifier of the unit cell and the characteristic signal, the control unit being provided in each of the unit cells; a light emitting unit that outputs an optical signal responding to the control signal; and an optical waveguide that provides a common optical path for optical signals that are output from a plurality of the light emitting units.
    Type: Application
    Filed: September 4, 2020
    Publication date: October 20, 2022
    Inventors: Hideaki Horie, Yohji Kawasaki, Yusuke Mizuno
  • Publication number: 20220336818
    Abstract: A lithium ion battery module includes a first metal sheet, a power storage element, and a second metal sheet in this order, in which the power storage element includes a lithium ion cell in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector are laminated in this order, the positive electrode current collector and the negative electrode current collector are provided as outermost layers, and an electrolytic solution is enclosed by sealing outer peripheries of the positive electrode active material layer and the negative electrode active material layer, a conductive elastic member is arranged between the positive electrode current collector of the outermost layer of the power storage element and the first metal sheet, and/or between the negative electrode current collector of the outermost layer of the power storage element and the second metal sheet, and the first metal she
    Type: Application
    Filed: August 19, 2020
    Publication date: October 20, 2022
    Applicant: APB CORPORATION
    Inventors: Kotaro NASU, Yusuke MIZUNO, Yuya TANAKA, Yusuke NAKASHIMA, Masatoshi OKURA, Kenichi KAWAKITA, Kazuya TSUCHIDA, Makoto NISHIGUCHI, Hideaki HORIE
  • Publication number: 20220328894
    Abstract: There is provided a production method for a recyclable electrode active material for a lithium ion battery, the lithium ion battery having a charge storage element including a first electrode that has a first current collector and a first electrode active material layer formed on the first current collector and consisting of a first electrode composition containing a first electrode active material, a second electrode that has a second current collector and a second electrode active material layer formed on the second current collector and consisting of a second electrode composition containing a second electrode active material, and a separator disposed between the first electrode active material layer and the second electrode active material layer, in which the first current collector is a first resin current collector, the production method including an isolation step of isolating the first electrode active material from the lithium ion battery in which a first current collector is a first resin current co
    Type: Application
    Filed: September 14, 2020
    Publication date: October 13, 2022
    Applicant: APB CORPORATION
    Inventors: Kaho SUZUKI, Yusuke NAKASHIMA, Shinya KOBAYASHI, Hideaki HORIE
  • Patent number: 11456447
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions. The predoping method for a negative electrode active material includes: a predoping process and a post-doping modification process. In the predoping process, the negative electrode active material is doped with lithium ions, to thereby reduce a potential of the negative electrode active material relative to lithium metal. In the post-doping modification process, after the predoping process, reaction is caused between a reactive compound that is reactive with lithium ions and lithium ions doped into the negative electrode active material, to thereby increase the potential of the negative electrode active material relative to lithium metal. The potential of the negative electrode active material relative to lithium metal is 0.8 V or more at completion of the post-doping modification process.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: September 27, 2022
    Assignees: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro Doi, Yuki Kusachi, Noboru Yamauchi, Tomohiro Kaburagi, Hideaki Horie, Yusuke Nakashima, Kazuya Tsuchida, Naofumi Shoji, Koji Sumiya, Shigehito Asano, Yasuyuki Koga, Nobuo Ando, Terukazu Kokubo
  • Patent number: 11430973
    Abstract: The present invention provides a viscous adhesive capable of retaining the shape of an electrode and allowing for production of an electrode for a lithium-ion battery having a structure in which the energy density of the electrode does not decrease. The present invention relates to a viscous adhesive for a lithium-ion electrode which allows active materials to adhere to each other in a lithium-ion electrode, the viscous adhesive having a glass transition temperature of 60° C. or lower, a solubility parameter of 8 to 13 (cal/cm3)1/2, and a storage shear modulus and a loss shear modulus of 2.0×103 to 5.0×107 Pa as measured in a frequency range of 10?1 to 101 Hz at 20° C.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: August 30, 2022
    Assignee: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Tomoya Ohta, Kotaro Nasu, Kenichi Kawakita, Takuya Suenaga, Yusuke Mori, Yasuhiko Ohsawa, Yuki Kusachi, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20220263064
    Abstract: The present invention relates to a method of manufacturing a lithium ion battery having a set of a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector laminated in this order, and having a configuration in which outer peripheries of the positive electrode active material layer and the negative electrode active material layer are sealed with a sealing material and an electrolytic solution is enclosed, the method including: a step of manufacturing a positive electrode and/or a negative electrode by an electrode manufacturing step including a supply step of preparing a frame-shaped sealing material and a bottom member, and supplying an electrode active material composition containing electrode active material particles and an electrolytic solution to a space surrounded by the sealing material and the bottom member, and a compression step of compressing the electrode active material co
    Type: Application
    Filed: August 5, 2020
    Publication date: August 18, 2022
    Applicant: APB CORPORATION
    Inventors: Yusuke NAKASHIMA, Ryosuke KUSANO, Yuichiro YOKOYAMA, Yuki NEKOHASHI, Kenichiro ENOKI, Yuya TANAKA, Hideaki HORIE
  • Patent number: 11380901
    Abstract: A resin current collector provides means for improving the cycle characteristics in a lithium ion battery and includes a polyolefin resin, and a conductive carbon filler. The total surface area of the conductive carbon filler contained in 1 g of the resin current collector is 7.0 m2 or more and 10.5 m2 or less.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: July 5, 2022
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Ryosuke Kusano, Yoshihiro Ikeda, Yasuhiro Tsudo, Yasuhiko Ohsawa, Yuki Kusachi, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20220190348
    Abstract: There is provided a lithium ion battery having a current collector and an electrode composition layer formed on a surface of the current collector, where the electrode composition layer contains coated electrode active material particles, each of which is obtained by coating at least a part of a surface of an electrode active material particle with a coating layer containing a polymer compound, the current collector has a conductive base material and a conductive composition layer containing a polymer compound and a conductive filler, on a surface of the conductive base material, the surface being in contact with the electrode composition layer, and the polymer compound contained in the conductive composition layer and the polymer compound contained in the coating layer have the same composition.
    Type: Application
    Filed: March 23, 2020
    Publication date: June 16, 2022
    Applicant: APB CORPORATION
    Inventors: Ryosuke KUSANO, Hideaki HORIE
  • Patent number: 11355794
    Abstract: The present disclosure provides a secondary battery module capable of optically transmitting measurement data on characteristics of cells forming a battery pack and further reducing a complicated procedure of wiring. The secondary battery module of the present disclosure includes: a battery pack in which a plurality of cell units are connected, each of the cell units including a cell and a light-emitting unit, the cell including a stacked unit and an electrolyte, the light-emitting unit being configured to measure characteristics of the cell and generate an optical signal according to the characteristics; and an optical waveguide into which an optical signal is introduced from the light-emitting unit of each of the cell units, wherein the number of optical waveguides is less than the number of optical signals, and the optical waveguide provides a common optical path through which optical signals are propagated from the light-emitting units provided in the battery pack.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: June 7, 2022
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., APB CORPORATION
    Inventors: Yohji Kawasaki, Yusuke Mizuno, Hideaki Horie
  • Patent number: 11355758
    Abstract: A current collector for a lithium ion battery includes a first conductive resin layer and a second conductive resin layer. The first conductive resin layer includes a first conductive filler. The second conductive resin layer is formed on the first conductive resin layer and includes a second conductive filler. The first conductive filler is a conductive carbon. The second conductive filler contains at least one kind of metal element selected from the group consisting of platinum, gold, silver, copper, nickel, and titanium. A volume % of the second conductive filler in the second conductive resin layer on a first surface side, which is a first conductive resin layer side, is higher than that on the second surface side that is opposite to the first conductive resin layer.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: June 7, 2022
    Assignees: GUNZE LIMITED, APB Corporation
    Inventors: Kazuaki Onishi, Masahiro Uchimaru, Ryosuke Kusano, Sonomi Fukuyama, Shun Kudoh, Yasuhiro Tsudo, Hideaki Horie
  • Patent number: 11322732
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: May 3, 2022
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20220123274
    Abstract: A method of manufacturing a battery electrode includes a powder supply step, a vibration step, a sorting step, a moving step, and a deposition step, in the powder supply step, a powder 60 composed of granulated particles is supplied, in the vibration step, vibration is applied to the powder, in the sorting step, the powder is caused to pass through at least one opening H1, H2 to adjust a particle diameter of the granulated particles to a particle diameter that allows passing through the opening, in the moving step, the powder that has passed through the opening is moved from an outlet position P1 of the opening to a supply position P2 where the powder is supplied to the surface of a current collector 31, and in the deposition step, the powder is deposited on the surface of the current collector.
    Type: Application
    Filed: January 29, 2020
    Publication date: April 21, 2022
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuyuki YODA, Tomohiro KABURAGI, Hiroshi KUBOTA, Shinichi AKAISHI, Hideaki HORIE, Yuki KUSACHI, Yuichiro YOKOYAMA
  • Patent number: 11309537
    Abstract: The present invention relates to a method of producing a lithium-ion battery member including an electrode composition layer that includes electrode active material particles and an electrolyte solution on a current collector or a separator, the method including: forming the electrode composition layer on a surface of a support different from either the current collector or the separator; and relocating the electrode composition layer from the surface of the support to the current collector or the separator, wherein a weight percent of the electrolyte solution in the electrode composition layer is 10 wt % or less based on the weight of the electrode composition layer, in the forming the electrode composition layer on a surface of a support and in the relocating the electrode composition layer from the surface of the support to the current collector or the separator.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: April 19, 2022
    Assignee: APB CORPORATION
    Inventors: Yohji Kawasaki, Yuichiro Yokoyama, Hideaki Horie
  • Patent number: 11302915
    Abstract: A negative electrode for non-aqueous electrolyte secondary battery provides a means for improving output characteristics at a high rate. The negative electrode has a negative electrode active material layer having a thickness of 150 to 1500 ?m formed on a surface of a current collector. In addition, the negative electrode active material layer includes coated negative electrode active material particles in which at least a part of a surface of a negative electrode active material is coated with a coating agent containing a coating resin and a conductive aid. Furthermore, a porosity of the negative electrode active material layer is 39.0% to 60.0% and a density of the negative electrode active material layer is 0.60 to 1.20 g/cm3.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: April 12, 2022
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroyuki Tanaka, Gentaro Kano, Hideaki Horie, Yuki Kusachi, Yusuke Nakashima, Kazuya Minami
  • Patent number: 11283066
    Abstract: An object of the present invention is to provide a negative electrode active material capable of reducing the irreversible capacity of a lithium ion battery. The present invention provides a coated negative electrode active material for lithium ion batteries wherein at least a portion of the surface of a particulate negative electrode active material for lithium ion batteries is coated with a coating agent and the coated negative electrode active material is doped with at least one of lithium and lithium ions.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: March 22, 2022
    Assignee: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yusuke Mizuno, Takahiro Imaishi, Kenichi Kawakita, Yuki Kusachi, Hiroshi Akama, Hideaki Horie
  • Publication number: 20220045334
    Abstract: A resin current collector is a current collector for a positive electrode of a lithium ion battery. This resin current collector includes a polyolefin resin and a conductive carbon filler. With this resin current collector, a value obtained by dividing the yield point strength in the TD (Traverse Direction) by the yield point strength in the MD (Machine Direction) is at least 0.75 and at most 1.10, and the ten-point average roughness Rz in the TD is less than 4 ?m.
    Type: Application
    Filed: September 3, 2020
    Publication date: February 10, 2022
    Inventors: Takehiro ISO, Kazuaki ONISHI, Hiroyuki NONAKA, Yasuji MARUYAMA,, Ryosuke KUSANO, Sonomi FUKUYAMA, Shun KUDOH, Yasuhiro TSUDO, Hideaki HORIE
  • Publication number: 20220045333
    Abstract: A current collector for a lithium ion battery includes a first conductive resin layer and a second conductive resin layer. The first conductive resin layer includes a first conductive filler. The second conductive resin layer is formed on the first conductive resin layer and includes a second conductive filler. The first conductive filler is a conductive carbon. The second conductive filler contains at least one kind of metal element selected from the group consisting of platinum, gold, silver, copper, nickel, and titanium. A volume % of the second conductive filler in the second conductive resin layer on a first surface side, which is a first conductive resin layer side, is higher than that on the second surface side that is opposite to the first conductive resin layer.
    Type: Application
    Filed: September 3, 2020
    Publication date: February 10, 2022
    Inventors: Kazuaki ONISHI, Masahiro UCHIMARU, Ryosuke KUSANO, Sonomi FUKUYAMA, Shun KUDOH, Yasuhiro TSUDO, Hideaki HORIE
  • Patent number: 11233229
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 25, 2022
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20220021089
    Abstract: A lithium ion battery including a cell formed by sequentially stacking a positive current collector, a positive active material layer, a separator, a negative active material layer, and a negative current collector, the lithium ion battery being characterized by including a frame member disposed between the positive current collector and the negative current collector to seal the positive active material layer, the separator, and the negative active material layer, the frame member having, disposed therein, an electronic component for detecting an internal condition of the cell.
    Type: Application
    Filed: March 19, 2020
    Publication date: January 20, 2022
    Inventors: Hideaki Horie, Keiichiro Higashi, Yohji Kawasaki, Yusuke Mizuno, Kotaro Nasu
  • Publication number: 20210408525
    Abstract: The present invention aims to provide a method for producing a pinhole-free thin resin current collector for negative electrodes. The method for producing a sheet-shaped resin current collector for negative electrodes of the present invention includes stacking three or more layers of melts of conductive resin compositions each containing a polyolefin and a conductive filler to obtain a multilayered body, wherein the polyolefin contained in each of the conductive resin compositions that form the respective layers of the multilayered body has a melt mass flow rate of 15 to 70 g/10 min as measured at a temperature of 230° C. and a load of 2.16 kg in accordance with JIS K7210-1:2014.
    Type: Application
    Filed: October 21, 2019
    Publication date: December 30, 2021
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., GUNZE LIMITED
    Inventors: Ryosuke KUSANO, Yasuhiro TSUDO, Yasuji MARUYAMA, Kazuaki ONISHI, Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE