Patents by Inventor Hideaki Horie

Hideaki Horie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170237046
    Abstract: Provided is a method for producing a lithium ion cell having an outer container composed of a resin molded article, and the method for producing a lithium ion cell includes a current collector forming process of forming, on the inner side of an outer container, each of a first electrode current collector and a second electrode current collector composed of an electrically conductive polymer composition by using a molding die.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 17, 2017
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yasuhiro SHINDO, Yusuke MIZUNO, Kenichi KAWAKITA, Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20170170668
    Abstract: The present invention is a power storage service system including: quantitatively grasping the time leading up to the expression of the abnormality; capable determining possible or impossible of avoiding stopping of the function of the assembled battery system. According to the invention, a maintenance operator and a maintenance service supplier of the assembled battery system have a time margin to plan a response schedule and to prepare responding, and it can reduce the cost of responding to the maintenance by reducing and optimizing the number of response.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 15, 2017
    Applicant: YOKOGAWA ELECTRIC CORPORATION
    Inventors: Hironori HAYASHIZAKI, Satoshi YOSHITAKE, Ryuuta TANAKA, Jun MURAI, Hideaki HORIE
  • Publication number: 20170033350
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Application
    Filed: December 12, 2014
    Publication date: February 2, 2017
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20170012283
    Abstract: An object of the present invention is to provide a negative electrode active material capable of reducing the irreversible capacity of a lithium ion battery. The present invention provides a coated negative electrode active material for lithium ion batteries wherein at least a portion of the surface of a particulate negative electrode active material for lithium ion batteries is coated with a coating agent and the coated negative electrode active material is doped with at least one of lithium and lithium ions.
    Type: Application
    Filed: February 16, 2015
    Publication date: January 12, 2017
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Takahiro IMAISHI, Kenichi KAWAKITA, Yuki KUSACHI, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20160351877
    Abstract: A non-aqueous electrolyte secondary battery has a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and an electrolyte layer having an electrolyte solution containing a non-aqueous solvent. At least one of the positive electrode active material layer and the negative electrode active material layer contains an electrode material for a non-aqueous electrolyte secondary battery having a core part including an electrode active material and a shell part including a conductive material in a base material formed by a gel-forming polymer having a liquid absorption rate with respect to the electrolyte solution of 10 to 200%.
    Type: Application
    Filed: January 26, 2015
    Publication date: December 1, 2016
    Inventors: Yuki Kusachi, Yasuhiko Ohsawa, Hiroshi Akama, Hideaki Horie, Yuta Murakami, Kenichi Kawakita, Yusuke Mizuno, Yasuhiro Tsudo, Yasuhiro Shindo
  • Publication number: 20160260966
    Abstract: A core-shell-type electrode material is used as an electrode active material layer of a non-aqueous electrolyte secondary battery, the core-shell-type electrode material having a core part in which at least a part of a surface of an electrode active material is coated with a first conductive material and a shell part in which a second conductive material is contained in a base material formed by a gel-forming polymer having a tensile elongation at break of 10% or more in a gel state.
    Type: Application
    Filed: October 3, 2014
    Publication date: September 8, 2016
    Inventors: Yasuhiko Ohsawa, Hideaki Horie, Hiroshi Akama, Yuki Kusachi, Yuta Murakami, Kenichi Kawakita, Yusuke Mizuno, Yasuhiro Tsudo, Yasuhiro Shindo
  • Publication number: 20160248086
    Abstract: A core-shell-type electrode material is used as an electrode active material layer of a non-aqueous electrolyte secondary battery, the core-shell-type electrode material having a core part including an electrode active material and a shell part in which a conductive material is contained in a base material formed by a gel-forming polymer having a tensile elongation at break of 10% or more in a gel state.
    Type: Application
    Filed: October 3, 2014
    Publication date: August 25, 2016
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Hideaki Horie, Hiroshi Akama, Yuki Kusachi, Yuta Murakami, Kenichi Kawakita, Yusuke Mizuno, Yasuhiro Tsudo, Yasuhiro Shindo
  • Publication number: 20160149216
    Abstract: An object of the present invention is to provide a resin for coating an active material for lithium ion batteries which can prevent expansion of the electrode without inhibiting conduction of lithium ions. The resin for coating an active material for lithium ion batteries according to the present invention has a liquid absorbing rate of 10% or more when the resin is immersed in an electrolyte solution, and a tensile elongation at break of 10% or more when the resin is saturated with the electrolyte solution.
    Type: Application
    Filed: June 25, 2014
    Publication date: May 26, 2016
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuta MURAKAMI, Yuki KUSACHI, Yasuhiko OHSAWA, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20160149223
    Abstract: An object of the present invention is to provide a dispersant for a resin current collector which can uniformly disperse a conductive filler to attain sufficient charge and discharge characteristics without impairing the output power per unit weight of a battery. The present invention provides a dispersant for a resin current collector comprising a polymer having a resin-philic block (A1) and a conductive filler-philic block (A2).
    Type: Application
    Filed: June 25, 2014
    Publication date: May 26, 2016
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Hiroshi FUKUMOTO, Yasuhiro SHINDO, Manabu WATANABE, Hiroshi AKAMA, Hideaki HORIE
  • Patent number: 9350008
    Abstract: An automobile cell is provided with an electric power generating element composed of a positive electrode having a positive electrode active substance layer, a negative electrode having a negative electrode active substance layer and a separator interposed between the electrodes, a cell outer sheath made of a laminate film compositely composed of polymer and metal, a positive electrode terminal lead electrically conductive with the positive electrode and extending to an outside of the cell outer sheath, and a negative electrode terminal lead electrically conductive with the negative electrode and extending to the outside of the cell outer sheath.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: May 24, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Osamu Shimamura, Hiroshi Sugawara, Hideaki Horie, Tomaru Ogawa, Takaaki Abe, Takanori Ito
  • Patent number: 9299973
    Abstract: A battery module 11 is structured to include a flat-type battery 40 in which current can be taken out from both faces of an electric generation element 20 in a layered direction, flat-plate-type electrode tabs 50 and 60 having a face contact with a current-taking-out plane of the flat-type battery to take out current, and a packaging case 100 covering the flat-type battery and the electrode tab. The inner face of the packaging case and the electrode tab have therebetween an elastic member 120.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: March 29, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Takuya Kinoshita, Hideaki Horie, Osamu Shimamura, Kenji Hosaka, Takaaki Abe
  • Publication number: 20160043405
    Abstract: Provided is a bipolar battery current collector that includes a conductive resin layer formed in such a manner as to, when at least part of the conductive resin layer reaches a predetermined temperature, interrupts a flow of electric current through the at least part of the conductive resin layer in a vertical direction thereof. Also provided is a bipolar battery using the current collector. It is possible by the use of the current collector to suppress local heat generation in the bipolar battery and improve the durability of the bipolar battery.
    Type: Application
    Filed: October 12, 2015
    Publication date: February 11, 2016
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuki MIYATAKE, Kenji HOSAKA, Yoshio SHIMOIDA, Hideaki HORIE
  • Patent number: 9203073
    Abstract: A bipolar battery includes: a power generation element formed by stacking a plurality of bipolar electrodes, in which an electrode layer is formed on a front and a rear of a collector, via an electrolyte layer; an elastic metal portion provided in contact with the power generation element so as to contact the power generation element in point or line contact when no external force is exerted thereon and contact the power generation element in surface contact when external force is exerted thereon; and an outer covering material provided to accommodate the power generation element and the elastic metal portion, an internal air pressure of which is set to be lower than an atmospheric pressure such that the elastic metal portion is caused to contact the power generation element in surface contact by a pressure difference between the internal air pressure and the atmospheric pressure.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 1, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Motoharu Obika, Hideaki Horie, Yoshiaki Nitta
  • Patent number: 9105939
    Abstract: The invention provides a battery electrode capable of improving a lifespan characteristic (cycle characteristic at the time of high temperature endurance). The battery electrode has a collector and an active material layer formed on a surface of the collector. The active material layer includes a plurality of binders having different specific gravities. The binders are more present at the collector side of the active material layer.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: August 11, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Chiduru Matsuyama, Hideaki Horie
  • Patent number: 9017877
    Abstract: A current collector for a nonaqueous solvent secondary battery, which includes: a first metal layer; and a second metal layer stacked on a surface of the first metal layer, is composed so that a Young's modulus (E1), Vickers hardness (Hv1) and thickness (T1) of the first metal layer and a Young's modulus (E2), Vickers hardness (Hv2) and thickness (T2) of the second metal layer can satisfy the following Expression: (E1>E2 or Hv1>Hv2); and T1<T2.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: April 28, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hajime Sato, Kenji Hosaka, Hideaki Horie
  • Patent number: 8945755
    Abstract: The disclosure discusses a secondary battery with superior durability and a vehicle configured to mount the same. The secondary battery comprises an electrode structure wherein a cathode is formed at one side of a base material layer having electrical insulating property and an anode is formed at another side of the base material layer. A plurality of electrode structures are stacked with an electrolyte layer interposed therebetween such that the cathode and anode of adjacent electrode structures are on opposite sides of the electrolyte layer.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: February 3, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yasuhiro Yanagihara, Hideaki Horie, Yoshio Shimoida, Kyouichi Watanabe, Osamu Shimamura, Yuichiro Yamamura
  • Patent number: 8852295
    Abstract: A secondary battery includes: an electric cell layer including a stack structure sequentially including: a positive electrode layer, a separator layer, and a negative electrode layer having an electrolyte higher in conductivity than an electrolyte of at least one of the separator layer and the positive electrode layer.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: October 7, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yasunari Hisamitsu, Hideaki Horie, Taketo Kaneko, Osamu Shimamura
  • Patent number: 8785041
    Abstract: An electrode includes a collector formed with a conductive resin layer and an active material layer formed on the conductive resin layer. The active material layer comprises an active material and a binder polymer, and the conductive resin layer is bonded by thermal fusion bonding to the active material layer.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: July 22, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shiho Inoue, Hideaki Horie, Kenji Hosaka, Osamu Shimamura, Shigeo Ibuka
  • Patent number: 8785033
    Abstract: In an assembled battery including at least two unit cells provided within a supporter, each unit cell is a thin laminate cell packaged with a laminate, and each unit cell is covered by at least one resin. Thus, the assembled battery has a stable performance without structure breakdown or a fracture of the connection tab even when vibration is applied.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: July 22, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kyoichi Watanabe, Hideaki Horie, Hiroshi Sugawara
  • Patent number: 8753767
    Abstract: An automobile cell is provided with an electric power generating element composed of a positive electrode having a positive electrode active substance layer, a negative electrode having a negative electrode active substance layer and a separator interposed between the electrodes, a cell outer sheath made of a laminate film compositely composed of polymer and metal, a positive electrode terminal lead electrically conductive with the positive electrode and extending to an outside of the cell outer sheath, and a negative electrode terminal lead electrically conductive with the negative electrode and extending to the outside of the cell outer sheath.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: June 17, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Osamu Shimamura, Hiroshi Sugawara, Hideaki Horie, Tomaru Ogawa, Takaaki Abe, Takanori Ito