Patents by Inventor Hideaki Sakurai

Hideaki Sakurai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170274427
    Abstract: A substrate cleaning method includes: steps (a) to (d). In step (a), a liquid is supplied onto a nanoimprint template substrate that has a patterned surface with foreign particles to form a liquid film on the patterned surface. In step (b), the liquid film is solidified to form a solidified film including the foreign particles. In step (c), the substrate is reversed. In step (d), the solidified film is melted to remove the foreign particles.
    Type: Application
    Filed: August 31, 2016
    Publication date: September 28, 2017
    Inventors: Hideaki SAKURAI, Kyo OTSUBO, Kenji MASUI, Tetsuo TAKEMOTO, Minako INUKAI, Masato NAKA
  • Publication number: 20170275189
    Abstract: A deposit monitoring device includes a non-permeated water line discharging non-permeated water where dissolved components and dispersed components are concentrated from water to be treated from a separation membrane device for obtaining permeated water by concentrating the dissolved components and dispersed components from water to be treated by a separation membrane; a first deposit detecting unit using part of the non-permeated water branched off as a detection liquid, and having a first separation membrane for detection in which the detection liquid is separated into permeated water for detection and non-permeated water for detection; a deposition condition altering device altering deposition conditions for deposits in the first separation membranes for detection; and first flow rate measuring devices for separated liquid detection that measure the flow rates of one or both of the permeated water for detection and the non-permeated water for detection separated by the first separation membrane for detecti
    Type: Application
    Filed: September 3, 2014
    Publication date: September 28, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideaki Sakurai, Hideo Suzuki, Hiroshi Nakashoji, Shigeru Yoshioka, Susumu Okino, Noriaki Senba, Shigehiro Sugiyama, Masayuki Eda, Hyota Abe, Ryo Kamito, Nobuyuki Ukai
  • Publication number: 20170267874
    Abstract: A method for producing an electrodeposition coated article, in which an insulating film is formed by forming an insulating layer on a surface of an article to be coated according to an electrodeposition method by using an electrodeposition coating material, and then by performing a baking treatment, the electrodeposition coating material contains a solvent containing polyamide imide and an organic solvent added to the electrodeposition coating material, a boiling point of the organic solvent is higher than 100° C., and a Hansen solubility parameter is similar to the polyamide imide and has high compatibility.
    Type: Application
    Filed: July 30, 2015
    Publication date: September 21, 2017
    Inventors: Shintaro Iida, Hideaki Sakurai, Hiroyuki Kamibayashi, Toyokazu Nagato
  • Publication number: 20170232395
    Abstract: A water treatment device is provided with a separation membrane device having a separation membrane for concentrating dissolved components and dispersed components from water to be treated and obtaining permeated water; a first deposit detecting unit provided in a non-permeated water branch line branched from a non-permeated water line for discharging non-permeated water in which dissolved components and dispersed components have been concentrated, using part of the non-permeated water that has branched off as a detection liquid, and having a first separation membrane for detection in which the detection liquid is separated into permeated water for detection and non-permeated water for detection; and first flow rate measuring devices for separated liquid for detection that measure the flow rates of one or both of the permeated water for detection and the non-permeated water for detection separated by the first separation membrane for detection.
    Type: Application
    Filed: September 3, 2014
    Publication date: August 17, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideaki Sakurai, Hideo Suzuki, Hiroshi Nakashoji, Shigeru Yoshioka, Susumu Okino, Noriaki Senba, Shigehiro Sugiyama, Masayuki Eda, Hyota Abe, Ryo Kamito, Nobuyuki Ukai
  • Publication number: 20170222127
    Abstract: A composition for forming a PZT-based piezoelectric film formed of Mn-doped composite metal oxides is provided, the composition including: PZT-based precursors containing metal atoms configuring the composite metal oxides; a diol; and polyvinylpyrrolidone, in which when a metal atom ratio in the composition is shown as Pb:Mn:Zr:Ti, the PZT-based precursors are contained so that a metal atom ratio of Pb is satisfied to be from 1.00 to 1.20, a metal atom ratio of Mn is satisfied to be equal to or greater than 0.002 and less than 0.05, a metal atom ratio of Zr is satisfied to be from 0.40 to 0.55, a metal atom ratio of Ti is satisfied to be from 0.45 to 0.60, and the total of Zr and Ti in a metal atom ratio is 1.
    Type: Application
    Filed: March 27, 2015
    Publication date: August 3, 2017
    Inventors: Toshihiro Doi, Hideaki Sakurai, Nobuyuki Soyama
  • Patent number: 9666331
    Abstract: This ferroelectric thin film-forming sol-gel solution contains: a PZT-based compound; a high-molecular compound used to adjust the viscosity containing polyvinyl pyrrolidone; and an organic dopant containing N-methyl pyrrolidone, in which the amount of the PZT-based compound is greater than or equal to 17 mass % in terms of oxides, the molar ratio (PZT-based compound:polyvinyl pyrrolidone) of the polyvinyl pyrrolidone to the PZT-based compound is 1:0.1 to 1:0.5 in terms of monomers, and the amount of the organic dopant containing N-methyl pyrrolidone in the sol-gel solution is 3 mass % to 13 mass %.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 30, 2017
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Toshihiro Doi, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20170136506
    Abstract: A cleaning device of the present invention simultaneously cleans two different hydraulic oil tubes of an aircraft. The cleaning device has a supply flow path, a return flow path, a valved connection tube, a connection tube on-off valve and a control section. The supply flow path is connected to a supply end of a first hydraulic oil tube. The return flow path is connected to a supply end of a second hydraulic oil tube. The valved connection tube is arranged between a connection end of the first hydraulic oil tube and a connection end of the second hydraulic oil tube and fluidly connects the first and second hydraulic oil tubes. The connection tube on-off valve is arranged in a flow path of the valved connection tube and controls a flow rate of a cleaning agent flowing through the valved connection tube according to an instruction from the control section.
    Type: Application
    Filed: May 29, 2015
    Publication date: May 18, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideaki SAKURAI, Yusuke SHIMANO
  • Publication number: 20170129815
    Abstract: A composition used for forming a PZT-based piezoelectric film formed of Mn and Nb co-doped composite metal oxides is provided, in which the composition includes PZT-based precursors so that a metal atom ratio (Pb:Mn:Nb:Zr:Ti) in the composition satisfies (1.00 to 1.25):(0.002 to 0.056):(0.002 to 0.056):(0.40 to 0.60):(0.40 to 0.60), a rate of Mn is from 0.20 to 0.80 when the total of metal atom rates of Mn and Nb is 1, a rate of Zr is from 0.40 to 0.60 when the total of metal atom rates of Zr and Ti is 1, and the total rate of Zr and Ti is from 0.9300 to 0.9902 when the total of metal atom rates of Mn, Nb, Zr, and Ti is 1.
    Type: Application
    Filed: March 12, 2015
    Publication date: May 11, 2017
    Inventors: Toshihiro Doi, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20170107156
    Abstract: A Ce-doped PZT-based piezoelectric film is provided which is formed of Ce-doped composite metal oxides represented by a general formula: PbzCexZryTi1-yO3. x, y, and z in the general formula satisfy a relationship of 0.005?x?0.05, a relationship of 0.40?y?0.55, and a relationship of 0.95?z?1.15, respectively. It is preferable that the hysteresis of the polarization quantity of the Ce-doped PZT-based piezoelectric film be shifted from the center of the hysteresis to a negative side by 4 kV/cm or more.
    Type: Application
    Filed: March 23, 2015
    Publication date: April 20, 2017
    Applicant: Mitsubishi Materials Corporation
    Inventors: Toshihiro Doi, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20170110648
    Abstract: A composition for forming a Ce-doped PZT-based piezoelectric film contains: PZT-based precursors containing metal atoms configuring the composite metal oxides; a diol; and polyvinylpyrrolidone. The PZT-based precursors are contained so that a metal atom ratio (Pb:Ce:Zr:Ti) in the composition satisfies (1.00 to 1.28):(0.005 to 0.05):(0.40 to 0.55):(0.60 to 0.45) and the total of Zr and Ti in a metal atom ratio is 1. A concentration of the PZT-based precursor in 100 mass % of the composition is from 17 mass % to 35 mass % in terms of an oxide concentration, a rate of diol in 100 mass % of the composition is from 16 mass % to 56 mass %, and a molar ratio of polyvinylpyrrolidone to 1 mole of the PZT-based precursor is 0.01 moles to 0.25 moles in terms of monomers.
    Type: Application
    Filed: March 20, 2015
    Publication date: April 20, 2017
    Inventors: Toshihiro Doi, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20170095835
    Abstract: A method for forming a LaNiO3 thin film is provided, the method including: a step of forming a coating film by coating a substrate surface which is coated with a Pt electrode with a LaNiO3 thin film-forming liquid composition and drying the LaNiO3 thin film-forming liquid composition in a state where amounts of H2, H2O, and CO adsorbed on the substrate surface per 1 cm2 are 1.0×10?10 g or less, 2.7×10?10 g or less, and 4.2×10?10 g or less, respectively; a step of pre-baking the coating film; and a step of forming a LaNiO3 thin film by baking the pre-baked coating film.
    Type: Application
    Filed: March 18, 2015
    Publication date: April 6, 2017
    Inventors: Jun Fujii, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20170072437
    Abstract: According to one embodiment, a dust collection apparatus includes a liquid supplier, a first member, and a liquid recoverer. One end of the first member is connected to the liquid supplier, one other end of the first member is connected to the liquid recoverer. The first member is conductive. The first member has a first surface including a plurality of trenches.
    Type: Application
    Filed: March 14, 2016
    Publication date: March 16, 2017
    Inventor: Hideaki SAKURAI
  • Patent number: 9595393
    Abstract: A dielectric-thin-film forming composition for forming a BST dielectric thin film, includes a liquid composition for forming a thin film which takes a form of a mixed composite metal oxide in which a composite oxide B including Cu (copper) is mixed into a composite metal oxide A expressed by a formula: Ba1-xSrxTiyO3 (wherein 0.2<x<0.6 and 0.9<y<1.1), the liquid composition is an organic metal compound solution in which a raw material for composing the composite metal oxide A and a raw material for composing the composite oxide B are dissolved in an organic solvent at a proportion having a metal atom ratio expressed by the formula shown above and a molar ratio between A and B in the range of 0.001?B/A<0.15.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: March 14, 2017
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Guillaume Guegan, Toshiaki Watanabe, Nobuyuki Soyama, Hideaki Sakurai
  • Publication number: 20170001912
    Abstract: A Mn and Nb co-doped PZT-based piezoelectric film formed of Mn and Nb co-doped composite metal oxides is provided, in which a metal atom ratio (Pb:Mn:Nb:Zr:Ti) in the film satisfies (0.98 to 1.12):(0.002 to 0.056):(0.002 to 0.056):(0.40 to 0.60):(0.40 to 0.60), a rate of Mn is from 0.20 to 0.80 when the total of metal atom rates of Mn and Nb is 1, a rate of Zr is from 0.40 to 0.60 when the total of metal atom rates of Zr and Ti is 1, and the total rate of Zr and Ti is from 0.9300 to 0.9902 when the total of metal atom rates of Mn, Nb, Zr, and Ti is 1.
    Type: Application
    Filed: March 12, 2015
    Publication date: January 5, 2017
    Inventors: Toshihiro Doi, Hideaki Sakurai, Nobuyuki Soyama
  • Patent number: 9502636
    Abstract: Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9<x<1.3, 0?y<0.1, and 0?z<0.9 are satisfied] with a composite oxide (B) or a carboxylic acid (B) represented by general formula (2): CnH2n+1COOH [wherein 3?n?7 is satisfied]. The composite oxide (B) contains one or at least two elements selected from the group consisting of P (phosphorus), Si, Ce, and Bi and one or at least two elements selected from the group consisting of Sn, Sm, Nd, and Y (yttrium).
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: November 22, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Jun Fujii, Hideaki Sakurai, Takashi Noguchi, Nobuyuki Soyama
  • Publication number: 20160279906
    Abstract: A ferroelectric film a plurality of fired films is provided. Each of the plurality of fired films is made of metal oxide in a perovskite structure including Pb, Zr, and Ti, a total content of Li, Na, and K in the each of the plurality of fired films is 3 mass ppm or less, and the total content of Li, Na, and K on one surface of each of the plurality of fired films is 5 times or more of the total concentration of Li, Na, and K on other surface of each of the plurality of fired films.
    Type: Application
    Filed: March 25, 2016
    Publication date: September 29, 2016
    Inventors: Hideaki Sakurai, Jun Fujii, Nobuyuki Soyama
  • Publication number: 20160259240
    Abstract: In a pattern formation method according to an embodiment, a resist pattern is formed on a first film formed on a substrate. In the process for forming the resist pattern, the resist pattern includes a first pattern including a defect in a predetermined region on the first film. Next, a second film is accumulated on the first pattern in the predetermined region. Furthermore, a second pattern is formed in the first film with the resist pattern and the second film. Then, a third pattern is formed in the predetermined region on the first film.
    Type: Application
    Filed: September 8, 2015
    Publication date: September 8, 2016
    Inventors: Keiko MORISHITA, Shingo KANAMITSU, Hideaki SAKURAI
  • Publication number: 20160254268
    Abstract: An LaNiO3 thin-film-forming composition contains an LaNiO3 precursor, an organic solvent and a stabilizer. Also, the mixture ratio of the LaNiO3 precursor relative to a total of 100% by mass of the LaNiO3 precursor, the organic solvent and the stabilizer is 1-20% by mass on an oxide basis. Further, the dispersion component (dD), the polarization component (dP), and the hydrogen bond component (dH) of the HSP value of the organic solvent fulfill the relations 14<dD<20, 3<dP<26, and d3<dH<30, respectively.
    Type: Application
    Filed: October 6, 2014
    Publication date: September 1, 2016
    Inventors: Jun Fujii, Hideaki Sakurai, Nobuyuki Soyama
  • Patent number: 9412485
    Abstract: A LaNiO3 thin film having extremely few voids is uniformly formed. Provided is a LaNiO3 thin film-forming composition for forming a LaNiO3 thin film. It includes: a LaNiO3 precursor; a first organic solvent; a stabilizer; and a second organic solvent. The first organic solvent includes carboxylic acids, alcohols, esters, ketones, ethers, cycloalkanes, aromatic compounds, or tetrahydrofuran. The stabilizer includes ?-diketones, ?-ketones, ?-keto esters, oxyacids, diols, triols, carboxylic acids, alkanolamines, or polyvalent amines. The second organic solvent has a boiling point of 150° C. to 300° C. and a surface tension of 20 to 50 dyn/cm. The LaNiO3 precursor content is 1 to 20 mass % with respect to 100 mass % of the composition. The stabilizer content is 0 to 10 mol with respect to 1 mol of a total amount of the LaNiO3 precursors. The second organic solvent content is 5 to 20 mass % with respect to the composition.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: August 9, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Jun Fujii, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20160207811
    Abstract: A scale detection device of a concentrating device comprises: a reverse osmosis membrane device 13 that is a concentrating device including a reverse osmosis membrane 13a, which is a filtering membrane for concentrating salt in a water to be treated 11, containing at least calcium sulfate to obtain reclaimed water 12; and a scale detection unit 15 disposed in a branched line L14 branched from a concentrated water line L13 discharging concentrated water 14 having a high concentration of salt, the scale detection unit further concentrating the salt in the concentrated water 14 to obtain reclaimed water for detection 16, and including a detection membrane 15a detecting the absence or presence of scale component deposition in the concentrated water 14.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 21, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Ryo Kamito, Susumu Okino, Masayuki Eda, Hideaki Sakurai, Nobuyuki Ukai, Hideo Suzuki, Hiroshi Nakashoji, Shigeru Yoshioka