Patents by Inventor Hidehiro Taniguchi

Hidehiro Taniguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8696217
    Abstract: The present invention provides a semiconductor laser module in which a coupling efficiency does not easily vary even though a displacement amount varies by the effect of welding. The semiconductor laser module comprises: a semiconductor laser element 2 for emitting a laser light whose cross-sectional shape at an emission end face is elliptical; an optical fiber 3 arranged to receive the laser light from the semiconductor laser element 2; a package 4 for housing the semiconductor laser element 2 and the optical fiber 3; a first fastening means 117 for fastening the optical fiber 3 to the package 4; and a second fastening means 7 for fastening the semiconductor laser element 2 to the package 4, wherein the semiconductor laser element 2 and the optical fiber 3 are fastened such that a minor axis of the elliptical shape of the laser light becomes parallel to a line connecting both ends of the optical fiber 3, said both ends being restricted by the first fastening means 117.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: April 15, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hidehiro Taniguchi, Jun Miyokawa
  • Publication number: 20140072007
    Abstract: To achieve stable multimode output even when driven by a drive current near a threshold value, provided is a laser apparatus comprising a semiconductor laser element; a wavelength selecting element that performs laser oscillation by forming a resonator between itself and a reflective surface of the semiconductor laser element to output oscillated laser light; and an optical system that is optically coupled to an emission surface of the semiconductor laser element with a coupling efficiency ? and inputs to the wavelength selecting element light output from the emission surface. The optical system causes a value that is correlated with a minimum light output within a linear light output region in which light output is linear with respect to an injection current injected to the semiconductor laser element to be less than this value occurring when the coupling efficiency ? is at a maximum.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hidehiro TANIGUCHI, Yutaka OHKI
  • Patent number: 8660160
    Abstract: A semiconductor laser element includes a substrate of a first conduction type and a layered semiconductor structure formed on the substrate. The layered semiconductor structure includes a first semiconductor layer of the first conduction type formed on the substrate, an active layer formed on the first semiconductor layer, and a second semiconductor layer of a second conduction type formed on the active layer, the second conduction type being opposite to the first conduction type. The first semiconductor layer, the active layer, and the second semiconductor layer include a non-window region through which a light emitted from the active layer passes and a window region surrounding the non-window region. Band gap energy of the active layer is larger in the window region than in the non-window region. The second semiconductor layer includes a current confinement layer.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: February 25, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hidehiro Taniguchi, Kouhei Kinugawa
  • Publication number: 20140027809
    Abstract: Provided is a semiconductor light device comprising a semiconductor substrate having a first conduction type; a first cladding layer having the first conduction type deposited above the semiconductor substrate; an active layer; a second cladding layer having a second conduction type; and a contact layer. The active layer includes a window portion that is disordered via diffusion of vacancies and a non-window portion having less disordering than the window portion, and the contact layer includes a first region and a second region that is below the first region and has greater affinity for hydrogen than the first region.
    Type: Application
    Filed: October 3, 2013
    Publication date: January 30, 2014
    Applicant: FURUKAWA ELECTRIC CO., LTD
    Inventors: Hidehiro TANIGUCHI, Yutaka OHKI
  • Patent number: 8615026
    Abstract: A method of manufacturing a semiconductor optical device including a semiconductor layer includes: forming a semiconductor layer; forming a first dielectric film on a first region of a surface of the semiconductor layer; forming a second dielectric film on a second region of the surface of the semiconductor layer, the second dielectric film having a density higher than that of the first dielectric film; and performing a thermal treatment in a predetermined temperature range after the second dielectric film forming, wherein within the temperature range, as the temperature is lowered, a difference increases between a bandgap in the semiconductor layer below the second dielectric film and a bandgap in the semiconductor layer below the first dielectric film due to the thermal treatment.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 24, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Hidehiro Taniguchi
  • Publication number: 20130322477
    Abstract: An optical device includes a ridge semiconductor laser element formed on a substrate, a first insulating film coating a lateral wall portion of a ridge structure of the ridge semiconductor laser element, and a second insulating film coating the ridge structure from above the first insulating film in an end portion region of the ridge structure. The second insulating film has a density lower than a density of the first insulating film.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 5, 2013
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Kouhei KINUGAWA, Hidehiro Taniguchi
  • Patent number: 8385379
    Abstract: A semiconductor device of the invention is formed so that n-type InP current blocking layers enter the inside of p-type InP cladding layers, i.e., the n-type current blocking layers ride over the upper part of the p-type InP cladding layers, so that a distance between the n-type InP current block layers composing a current blocking region is narrower than a width of the p-type cladding layers contacting with the n-type InP current blocking layers. Thereby, the semiconductor device whose leak current in the current blocking region may be reduced which permits high-output and high-temperature operations may be readily fabricated.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: February 26, 2013
    Assignee: Furukawa Electric Co., Ltd
    Inventors: Junji Yoshida, Naoki Tsukiji, Hidehiro Taniguchi, Satoshi Irino, Hirokazu Itoh, Harunobu Ikeda, Masako Kobayakawa, Akihiko Kasukawa
  • Publication number: 20120114000
    Abstract: A method of manufacturing a semiconductor optical device including a semiconductor layer includes: forming a semiconductor layer; forming a first dielectric film on a first region of a surface of the semiconductor layer; forming a second dielectric film on a second region of the surface of the semiconductor layer, the second dielectric film having a density higher than that of the first dielectric film; and performing a thermal treatment in a predetermined temperature range after the second dielectric film forming, wherein within the temperature range, as the temperature is lowered, a difference increases between a bandgap in the semiconductor layer below the second dielectric film and a bandgap in the semiconductor layer below the first dielectric film due to the thermal treatment.
    Type: Application
    Filed: June 9, 2010
    Publication date: May 10, 2012
    Applicant: Furukawa Electric Co., Ltd.
    Inventor: Hidehiro Taniguchi
  • Publication number: 20120027352
    Abstract: The present invention provides a semiconductor laser module in which a coupling efficiency does not easily vary even though a displacement amount varies by the effect of welding. The semiconductor laser module comprises: a semiconductor laser element 2 for emitting a laser light whose cross-sectional shape at an emission end face is elliptical; an optical fiber 3 arranged to receive the laser light from the semiconductor laser element 2; a package 4 for housing the semiconductor laser element 2 and the optical fiber 3; a first fastening means 117 for fastening the optical fiber 3 to the package 4; and a second fastening means 7 for fastening the semiconductor laser element 2 to the package 4, wherein the semiconductor laser element 2 and the optical fiber 3 are fastened such that a minor axis of the elliptical shape of the laser light becomes parallel to a line connecting both ends of the optical fiber 3, said both ends being restricted by the first fastening means 117.
    Type: Application
    Filed: March 12, 2010
    Publication date: February 2, 2012
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Hidehiro Taniguchi, Jun Miyokawa
  • Patent number: 8030224
    Abstract: A method of manufacturing a semiconductor device including a semiconductor layer and a dielectric layer deposited on the semiconductor layer, including: forming the semiconductor layer; performing a surface treatment for removing a residual carbon compound, on a surface of the semiconductor layer formed; forming a dielectric film under a depositing condition corresponding to a surface state after the surface treatment, on at least a part of the surface of the semiconductor layer on which the surface treatment has been performed; and changing a crystalline state of at least a partial region of the semiconductor layer by performing a heat treatment on the semiconductor layer on which the dielectric film has been formed.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: October 4, 2011
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hidehiro Taniguchi, Takeshi Namegaya, Etsuji Katayama
  • Publication number: 20110164641
    Abstract: A semiconductor device of the invention is formed so that n-type InP current blocking layers enter the inside of p-type InP cladding layers, i.e., the n-type current blocking layers ride over the upper part of the p-type InP cladding layers, so that a distance between the n-type InP current block layers composing a current blocking region is narrower than a width of the p-type cladding layers contacting with the n-type InP current blocking layers. Thereby, the semiconductor device whose leak current in the current blocking region may be reduced which permits high-output and high-temperature operations may be readily fabricated.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Junji Yoshida, Naoki Tsukiji, Hidehiro Taniguchi, Satoshi Irino, Hirokazu Itoh, Harunobu Ikeda, Masako Kobayakawa, Akihiko Kasukawa
  • Publication number: 20100232464
    Abstract: A method of manufacturing a semiconductor device including a semiconductor layer and a dielectric layer deposited on the semiconductor layer, including: forming the semiconductor layer; performing a surface treatment for removing a residual carbon compound, on a surface of the semiconductor layer formed; forming a dielectric film under a depositing condition corresponding to a surface state after the surface treatment, on at least a part of the surface of the semiconductor layer on which the surface treatment has been performed; and changing a crystalline state of at least a partial region of the semiconductor layer by performing a heat treatment on the semiconductor layer on which the dielectric film has been formed.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 16, 2010
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hidehiro TANIGUCHI, Takeshi Namegaya, Etsuji Katayama
  • Publication number: 20100195685
    Abstract: A semiconductor laser element includes: a window region including a disordered portion formed by diffusion of a group-III vacancy, the diffusion promoted by providing on the window region a promoting film that absorbs a predetermined atom; a non-window region including an active layer of a quantum well structure; and a difference equal to or larger than 50 meV between an energy band gap in the window region and an energy band gap in the non-window region.
    Type: Application
    Filed: March 3, 2010
    Publication date: August 5, 2010
    Applicant: FURUKAWA ELECTRIC CO., LTD
    Inventors: Hidehiro Taniguchi, Hirotatsu Ishii, Takeshi Namegaya
  • Patent number: 7653317
    Abstract: A first light feedback element is arranged at an optical distance L1 from a front facet of a semiconductor laser from which an output light is emitted on an optical path of the output light. An i-th light feedback element is arranged at an optical distance Li from the front facet on the optical path of the output light, where i=2 to n, n is a positive integer not less than 2, and Li>L1. L1 and Li satisfies ((M?1)+0.01)<(Li/L1)<(M?0.01), where M is a positive integer not less than 2, satisfying (M?1)<(Li/L1)?M.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: January 26, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Yutaka Ohki, Naoki Tsukiji, Hidehiro Taniguchi
  • Publication number: 20060176922
    Abstract: A first light feedback element is arranged at an optical distance L1 from a front facet of a semiconductor laser from which an output light is emitted on an optical path of the output light. An i-th light feedback element is arranged at an optical distance Li from the front facet on the optical path of the output light, where i=2 to n, n is a positive integer not less than 2, and Li>L1. L1 and Li satisfies ((M?1)+0.01)<(Li/L1)<(M?0.01), where M is a positive integer not less than 2, satisfying (M?1)<(Li/L1)?M .
    Type: Application
    Filed: March 21, 2006
    Publication date: August 10, 2006
    Applicant: The Furukawa Electric Co, Ltd.
    Inventors: Yutaka Ohki, Naoki Tsukiji, Hidehiro Taniguchi
  • Patent number: 6934311
    Abstract: A semiconductor laser module has a Fabry-Perot type semiconductor laser device, an optical fiber, and first and second lenses. The tip of the optical fiber, on which the laser beam falls, is askew polished. The optical fiber is fixed in such a manner that the axis of the optical fiber makes an angle with respect to an optical axis of the laser beam. Coatings that avoid reflection are formed on the tip of the optical fiber, and on the first and second lenses.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: August 23, 2005
    Assignee: The Furukawa Manufacturing Co., Ltd.
    Inventors: Hiroshi Shimizu, Naoki Tsukiji, Junji Yoshida, Toshio Kimura, Yutaka Ohki, Kouhei Terada, Hidehiro Taniguchi
  • Publication number: 20030128728
    Abstract: A semiconductor laser module has a Fabry-Perot type semiconductor laser device, an optical fiber, and first and second lenses. The tip of the optical fiber, on which the laser beam falls, is askew polished. The optical fiber is fixed in such a manner that the axis of the optical fiber makes an angle with respect to an optical axis of the laser beam. Coatings that avoid reflection are formed on the tip of the optical fiber, and on the first and second lenses.
    Type: Application
    Filed: December 27, 2002
    Publication date: July 10, 2003
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroshi Shimizu, Naoki Tsukiji, Junji Yoshida, Toshio Kimura, Yutaka Ohki, Kouhei Terada, Hidehiro Taniguchi