Patents by Inventor Hideki Akiba

Hideki Akiba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971682
    Abstract: A cartridge includes a first unit including a photosensitive member, and a second unit including a developer bearing member and a force receiving portion, the second unit being configured to be rotatable about a first axis to move with respect to the first unit between a first position and a second position. In a state where the first unit is in a same posture as when an image forming operation is performed, the second unit is disposed at the second position by its own weight. The developer bearing member is configured to be rotatable about a second axis. When seen in the direction of the first axis, a first distance between the force receiving portion and the second axis is smaller than a second distance between the first axis and the second axis and a third distance between the first axis and the force receiving portion.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: April 30, 2024
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hideki Kakuta, Toshiaki Takeuchi, Yu Akiba, Shuichi Gofuku, Tomofumi Kawamura, Yusuke Atsu, Joji Goto
  • Patent number: 10669197
    Abstract: The present invention provides a surface-modified glass fiber film having its surface modified by a silicon-containing compound, and a value of a common flexural rigidity of the surface-modified glass fiber film as measured by the method described in JIS R 3420 is in the range of 3 to 100 times as compared to a value of the common flexural rigidity of an unmodified glass fiber film. There can be provided a surface-modified glass fiber film having a high strength, a high heat resistance, a good dimensional stability, a good self-supporting property, a low average linear expansion coefficient, a high storage rigidity at high temperature, and an excellent surface uniformity.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: June 2, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Saiko Akahane, Yoshihira Hamamoto, Hideki Akiba, Shinsuke Yamaguchi, Toshio Shiobara
  • Patent number: 10242924
    Abstract: A base-attached encapsulant for semiconductor encapsulation is used for collectively encapsulating a device-mounted surface of the semiconductor device-mounted substrate having semiconductor devices mounted thereon or a device-formed surface of a semiconductor device-formed wafer having semiconductor devices formed thereon. The base-attached encapsulant has a base and an encapsulating resin layer containing an uncured or semi-cured thermosetting resin component formed onto one of the surfaces of the base, and a linear expansion coefficient ?1 of the semiconductor device to be encapsulated by the base-attached encapsulant, a linear expansion coefficient ?2 of a cured product of the encapsulating resin layer, and a linear expansion coefficient ?3 of the base satisfy both of the following formula (1) and (2); ?1<?3<?2??(1) ?2<?1+?2?2?3<2??(2) wherein the unit of the linear expansion coefficient is ppm/K.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: March 26, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tomoaki Nakamura, Hideki Akiba, Toshio Shiobara
  • Patent number: 10177059
    Abstract: A base-attached encapsulant for semiconductor encapsulation is used for collectively encapsulating a device-mounted surface of the semiconductor device-mounted substrate having semiconductor devices mounted thereon or a device-formed surface of a semiconductor device-formed wafer having semiconductor devices formed thereon. The base-attached encapsulant has a base and an encapsulating resin layer containing an uncured or semi-cured thermosetting resin component formed onto one of the surfaces of the base, and a linear expansion coefficient ?1 of the semiconductor device to be encapsulated by the base-attached encapsulant, a linear expansion coefficient ?2 of a cured product of the encapsulating resin layer, and a linear expansion coefficient ?3 of the base satisfy both of the following formula (1) and (2); ?1<?3<?2??(1) ?2<?1+?2?2?3<2??(2) wherein the unit of the linear expansion coefficient is ppm/K.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: January 8, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tomoaki Nakamura, Hideki Akiba, Toshio Shiobara
  • Publication number: 20180025958
    Abstract: A base-attached encapsulant for semiconductor encapsulation is used for collectively encapsulating a device-mounted surface of the semiconductor device-mounted substrate having semiconductor devices mounted thereon or a device-formed surface of a semiconductor device-formed wafer having semiconductor devices formed thereon. The base-attached encapsulant has a base and an encapsulating resin layer containing an uncured or semi-cured thermosetting resin component formed onto one of the surfaces of the base, and a linear expansion coefficient ?1 of the semiconductor device to be encapsulated by the base-attached encapsulant, a linear expansion coefficient ?2 of a cured product of the encapsulating resin layer, and a linear expansion coefficient ?3 of the base satisfy both of the following formula (1) and (2); ?1<?3<?2 ??(1) ?2<?1+?2?2?3<2 ??(2) wherein the unit of the linear expansion coefficient is ppm/K.
    Type: Application
    Filed: September 26, 2017
    Publication date: January 25, 2018
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tomoaki NAKAMURA, Hideki AKIBA, Toshio SHIOBARA
  • Patent number: 9865518
    Abstract: The present invention provides an electromagnetic wave shielding support base-attached encapsulant for collectively encapsulating a semiconductor device mounting surface of a substrate having semiconductor devices mounted thereon or a semiconductor device forming surface of a wafer having semiconductor devices formed thereon, the support base-attached encapsulant including a support base having an electromagnetic wave shielding property of 20 dB or more within a range of 100 MHz to 1,000 MHz, and an encapsulant composed of a thermosetting resin layer laminated on the support base.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: January 9, 2018
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hideki Akiba, Tomoaki Nakamura, Toshio Shiobara, Shinsuke Yamaguchi
  • Publication number: 20170330813
    Abstract: A base-attached encapsulant for semiconductor encapsulation is used for collectively encapsulating a device-mounted surface of the semiconductor device-mounted substrate having semiconductor devices mounted thereon or a device-formed surface of a semiconductor device-formed wafer having semiconductor devices formed thereon. The base-attached encapsulant has a base and an encapsulating resin layer containing an uncured or semi-cured thermosetting resin component formed onto one of the surfaces of the base, and a linear expansion coefficient ?1 of the semiconductor device to be encapsulated by the base-attached encapsulant, a linear expansion coefficient ?2 of a cured product of the encapsulating resin layer, and a linear expansion coefficient ?3 of the base satisfy both of the following formula (1) and (2); ?1<?3<?2 ??(1) ?2<?1+?2?2?3<2 ??(2) wherein the unit of the linear expansion coefficient is ppm/K.
    Type: Application
    Filed: April 18, 2017
    Publication date: November 16, 2017
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tomoaki NAKAMURA, Hideki AKIBA, Toshio SHIOBARA
  • Publication number: 20170282527
    Abstract: Manufacturing a semiconductor apparatus includes preparing a support-base attached encapsulant including a thermosetting resin layer stacked as an encapsulant on a support base, coating a semiconductor-device mounting surface of a substrate on which semiconductor devices are mounted, or a semiconductor-device forming surface of a wafer on which semiconductor devices are formed with the thermosetting resin layer of the support-base attached encapsulant, heating and curing the thermosetting resin layer to collectively encapsulate the semiconductor-device mounting surface of the substrate or the semiconductor-device forming surface of the wafer, and cutting the encapsulated substrate or wafer by dicing.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 5, 2017
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hideki AKIBA, Tomoaki NAKAMURA, Toshio SHIOBARA
  • Publication number: 20170110415
    Abstract: A method for manufacturing a semiconductor apparatus, including an encapsulating step of collectively encapsulating a device mounting surface of a substrate having semiconductor devices mounted thereon with a base-attached encapsulant having a base and a thermosetting resin layer formed on one surface of the base, the semiconductor devices being mounted by flip chip bonding, the encapsulating step including a unifying stage of unifying the substrate having the semiconductor devices mounted thereon and the base-attached encapsulant under a reduced pressure condition with a vacuum of 10 kPa or less, and a pressing stage of pressing the unified substrate with a pressure of 0.2 MPa or more.
    Type: Application
    Filed: December 23, 2016
    Publication date: April 20, 2017
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tomoaki NAKAMURA, Hideki AKIBA, Toshio SHIOBARA
  • Publication number: 20170098551
    Abstract: A base-attached encapsulant for semiconductor encapsulation, includes a base and encapsulating resin layer on one surface of the base, the base being composed of a fibrous base layer in which a thermosetting resin composition containing a thermosetting resin is impregnated into a fibrous base and cured, a cured material layer A composed of a cured material of the thermosetting resin composition formed on the fibrous base layer at the opposite side to the encapsulating resin layer, and a cured material layer B composed of a cured material of the thermosetting resin composition formed on the fibrous base layer at the encapsulating resin layer side. The thickness Ta of the cured material layer A is 0.5 ?m or more. The ratio Ta/Tb of the thickness Ta of the cured material layer A and the thickness Tb of the cured material layer B is in a range of 0.1 to 10.
    Type: Application
    Filed: August 30, 2016
    Publication date: April 6, 2017
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tomoaki NAKAMURA, Hideki AKIBA, Toshio SHIOBARA, Shinsuke YAMAGUCHI
  • Patent number: 9449856
    Abstract: The present invention provides an encapsulant with a base for use in semiconductor encapsulation, for collectively encapsulating a device mounting surface of a substrate on which semiconductor devices are mounted, or a device forming surface of a wafer on which semiconductor devices are formed, the encapsulant comprising the base, an encapsulating resin layer composed of an uncured or semi-cured thermosetting resin formed on one surface of the base, and a surface resin layer formed on the other surface of the base. The encapsulant enables a semiconductor apparatus having a good appearance and laser marking property to be manufactured.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: September 20, 2016
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tomoaki Nakamura, Toshio Shiobara, Hideki Akiba, Susumu Sekiguchi
  • Patent number: 9401290
    Abstract: A method for producing a semiconductor apparatus with a mold including an upper mold half and a lower mold half, includes: an arranging step of arranging on one of the upper mold half and the lower mold half of the mold a substrate on which a semiconductor device is mounted, the mold being kept at a room temperature or heated to a temperature up to 200° C., and arranging on the other of the upper mold half and the lower mold half a substrate on which no semiconductor device is mounted; an integrating step of integrating the substrate on which the semiconductor device is mounted and the substrate on which no semiconductor device is mounted by molding a thermosetting resin with the mold on which the substrates are arranged; and a step of dicing the integrated substrates taken out of the mold to obtain an individualized semiconductor apparatus.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: July 26, 2016
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Toshio Shiobara, Susumu Sekiguchi, Hideki Akiba
  • Patent number: 9362145
    Abstract: A method for producing a semiconductor apparatus with a mold including an upper mold half and a lower mold half, includes: an arranging step of arranging on one of the upper mold half and the lower mold half of the mold a substrate on which a semiconductor device is mounted, the mold being kept at a room temperature or heated to a temperature up to 200° C., and arranging on the other of the upper mold half and the lower mold half a substrate on which no semiconductor device is mounted; an integrating step of integrating the substrate on which the semiconductor device is mounted and the substrate on which no semiconductor device is mounted by molding a thermosetting resin with the mold on which the substrates are arranged; and a step of dicing the integrated substrates taken out of the mold to obtain an individualized semiconductor apparatus.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: June 7, 2016
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Toshio Shiobara, Susumu Sekiguchi, Hideki Akiba
  • Publication number: 20160141268
    Abstract: A method for manufacturing a semiconductor-apparatus, including an encapsulating step of a device mounting surface of a substrate having semiconductor-devices mounted thereon with a base-attached encapsulant having a base and a thermosetting resin layer formed on one surface of the base, the semiconductor-devices being mounted by flip-chip bonding, the encapsulating step including a unifying stage of the substrate having the semiconductor-devices mounted thereon and the base-attached encapsulant under a reduced pressure condition with a vacuum of 10 kPa or less and a pressing stage of the unified substrate with a pressure of 0.2 MPa or more.
    Type: Application
    Filed: October 26, 2015
    Publication date: May 19, 2016
    Inventors: Tomoaki NAKAMURA, Hideki AKIBA, Toshio SHIOBARA
  • Publication number: 20160133579
    Abstract: The present invention provides an electromagnetic wave shielding support base-attached encapsulant for collectively encapsulating a semiconductor device mounting surface of a substrate having semiconductor devices mounted thereon or a semiconductor device forming surface of a wafer having semiconductor devices formed thereon, the support base-attached encapsulant including a support base having an electromagnetic wave shielding property of 20 dB or more within a range of 100 MHz to 1,000 MHz, and an encapsulant composed of a thermosetting resin layer laminated on the support base.
    Type: Application
    Filed: October 1, 2015
    Publication date: May 12, 2016
    Inventors: Hideki AKIBA, Tomoaki NAKAMURA, Toshio SHIOBARA, Shinsuke YAMAGUCHI
  • Patent number: 9312197
    Abstract: Support base-attached encapsulant for collectively encapsulating a semiconductor device mounting surface of a substrate or semiconductor device forming surface of a wafer, containing a support base having one fibrous film or a plurality of the fibrous films being laminated, the fibrous film subjected to surface treatment with an organosilicon compound, and a resin layer of thermosetting resin formed on one surface of the support base. The support base-attached encapsulant inhibit the substrate or wafer from warping and semiconductor devices from peeling away from the substrate, and collectively encapsulate the semiconductor device mounting surface of the substrate or the semiconductor device forming surface of the wafer even when a large-diameter wafer or large-area substrate is encapsulated.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: April 12, 2016
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hideki Akiba, Tomoaki Nakamura, Shinsuke Yamaguchi, Toshio Shiobara
  • Patent number: 9287174
    Abstract: A fiber-containing resin substrate for collectively encapsulating a semiconductor-device-mounting surface of a substrate on which semiconductor devices are mounted or a semiconductor-device-forming surface of a wafer on which a semiconductor device is formed, including a resin-impregnated fibrous base material which is obtained by impregnating a fibrous base material with a thermosetting resin and semi-curing or curing the thermosetting resin and has a linear expansion coefficient (ppm/° C.) in an X-Y direction of less than 3 ppm, and an uncured resin layer formed of an uncured thermosetting resin on one side of the resin-impregnated fibrous base material.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: March 15, 2016
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Susumu Sekiguchi, Toshio Shiobara, Hideki Akiba, Tomoaki Nakamura
  • Publication number: 20160043012
    Abstract: A fiber-containing resin substrate for collectively encapsulating a semiconductor-device-mounting surface of a substrate on which semiconductor devices are mounted or a semiconductor-device-forming surface of a wafer on which a semiconductor device is formed, including a resin-impregnated fibrous base material which is obtained by impregnating a fibrous base material with a thermosetting resin and semi-curing or curing the thermosetting resin and has a linear expansion coefficient (ppm/° C.) in an X-Y direction of less than 3 ppm, and an uncured resin layer formed of an uncured thermosetting resin on one side of the resin-impregnated fibrous base material.
    Type: Application
    Filed: October 21, 2015
    Publication date: February 11, 2016
    Inventors: Susumu SEKIGUCHI, Toshio SHIOBARA, Hideki AKIBA, Tomoaki NAKAMURA
  • Publication number: 20160044839
    Abstract: The present invention provides an electromagnetic wave shielding sheet including a surface-treated fibrous film and a conductive layer, the surface-treated fibrous film having a conventional bending rigidity 3 to 100 times larger than a conventional bending rigidity of a untreated fibrous film as measured according to a procedure described in Japanese Industrial Standards R 3420, the conductive layer being composed of a metallic mesh. The electromagnetic wave shielding sheet has sufficient electromagnetic wave shielding property, high strength, flexibility, excellent dimensional stability, and high heat resistance and configured to inhibit warp and swell during high temperature heating.
    Type: Application
    Filed: June 30, 2015
    Publication date: February 11, 2016
    Inventors: Saiko AKAHANE, Hideki AKIBA, Toshio SHIOBARA
  • Publication number: 20160035638
    Abstract: Support base-attached encapsulant for collectively encapsulating a semiconductor device mounting surface of a substrate or semiconductor device forming surface of a wafer, containing a support base having one fibrous film or a plurality of the fibrous films being laminated, the fibrous film subjected to surface treatment with an organosilicon compound, and a resin layer of thermosetting resin formed on one surface of the support base. The support base-attached encapsulant inhibit the substrate or wafer from warping and semiconductor devices from peeling away from the substrate, and collectively encapsulate the semiconductor device mounting surface of the substrate or the semiconductor device forming surface of the wafer even when a large-diameter wafer or large-area substrate is encapsulated.
    Type: Application
    Filed: June 12, 2015
    Publication date: February 4, 2016
    Inventors: Hideki AKIBA, Tomoaki NAKAMURA, Shinsuke YAMAGUCHI, Toshio SHIOBARA