Patents by Inventor Hideki Eifuku

Hideki Eifuku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8034447
    Abstract: The invention intends to provide an electronic component mounting adhesive that can inhibit cracks and peelings in an electronic component mounting structure obtained by joining electronic components each other from occurring and an electronic component mounting structure obtained by joining electronic components with such an electronic component mounting adhesive. In an electronic component mounting structure, a first circuit board and a second circuit board are bonded with an electronic component mounting adhesive. Here, the electronic component mounting adhesive is obtained by dispersing metal particles having the melting temperature Mp lower than the glass transition temperature Tg of a cured material of a thermosetting resin in the thermosetting resin.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: October 11, 2011
    Assignee: Panasonic Corporation
    Inventors: Tadahiko Sakai, Hideki Eifuku, Kouji Motomura
  • Patent number: 8025205
    Abstract: By an electronic component mounting method for electrically connecting bumps to board electrodes, in a contact process for placing a thermosetting resin in a liquid glob state on the board surface and bringing the lower surface of the electronic component into contact with the thermosetting resin, the bumps are pressurized against the electrodes in positional alignment in a liquid glob distribution state where one portion of the liquid glob is arranged inside an electronic component mounting region and a remaining portion greater in liquid measure than the one portion is arranged outside the electronic component mounting region. The thermosetting resin enters into a gap between the electronic component and the board by capillarity in a thermocompression bonding process. This prevents voids occurring in the sealing resin, reinforces bonded portions of bumps and electrodes with thermally cured thermosetting resin, thereby preventing bonded portion breakage due to thermal stress generated during cooling.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: September 27, 2011
    Assignees: Panasonic Corporation, Namics Corporation
    Inventors: Tadahiko Sakai, Hideki Eifuku, Osamu Suzuki, Satomi Kawamoto
  • Patent number: 8018074
    Abstract: To provide a components joining method and a components joining structure which can realize joining of components while securing conduction at a low electrical resistance with high reliability. In a construction in which by using a solder paste containing solder particles 5 in a thermosetting resin 3a, a rigid substrate 1 and a flexible substrate 7 are bonded by the thermosetting resin 3a, and a first terminal 2 and a second terminal 8 are electrically connected by the solder particles 5, a blending ratio of an activator of the thermosetting resin 3a in the solder paste is properly set and oxide film removed portions 2b, 8b, and 5b are partially formed in oxide films 2a, 8a, and 5a of the first terminal 2, the second terminal 8, and the solder particles 5.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: September 13, 2011
    Assignee: Panasonic Corporation
    Inventors: Tadahiko Sakai, Hideki Eifuku, Yoshiyuki Wada
  • Patent number: 7886432
    Abstract: A method for connecting a first terminal array 6 provided in a connection portion 5 of a first electric component and a second terminal array 8 provided in a connection portion 7 of a second electric component to each other in such a manner that electric continuity is established between them has two steps, that is, a step of tentatively fixing the two connection portions 5 and 7 with each other whose terminal arrays 6 and 8 are positioned with respect to each other by soldering them with solder particles 3 using a paste-like anisotropic conductive adhesive 1 in which the solder particles 3 and conductive particles 4 are dispersed in a thermosetting resin 2, and a step of finally fixing the two connection portions 5 and 7 with each other with the thermosetting resin 2 that has been set thermally. This prevents positional deviation from occurring between the two terminal arrays 6 and 8 during a transport from a tentative fixing apparatus to a final fixing apparatus.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: February 15, 2011
    Assignee: Panasonic Corporation
    Inventors: Tadahiko Sakai, Hideki Eifuku
  • Publication number: 20100327044
    Abstract: After disposing bonding material including thermosetting resin containing solder particles in a region that covers at least land part on an upper surface of base wiring layer and holding electronic component by base wiring layer by positioning terminal part with respect to land part and adhesively bonding at least terminal part to bonding material that covers at least land part, bonding material is semi-cured by heating. Therefore, warp deformation of the base wiring layer can be suppressed and bonding reliability can be secured.
    Type: Application
    Filed: February 18, 2009
    Publication date: December 30, 2010
    Inventors: Tadahiko Sakai, Koji Motomura, Hideki Eifuku
  • Patent number: 7845074
    Abstract: The method for manufacturing an electronic parts module includes an adhesive layer forming process forming an adhesive layer including solder particles on the circuit forming surface in range covering at least the first land part and the second land part; a passive element mounting process positioning a terminal of the passive element on the first land part and sticking the passive element to the base wiring layer through the adhesive layer; an active element mounting process, after the passive element mounting process, positioning a terminal of the active element on the second land part and sticking the active element to the base wiring layer through the adhesive layer; a pressing process solidifying the adhesive layer and melting the solder particles by laminating and thermally pressing a thermosetting sheet onto the circuit forming surface so as to form the resin sealing layer.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: December 7, 2010
    Assignee: Panasonic Corporation
    Inventors: Koji Motomura, Hideki Eifuku, Tadahiko Sakai
  • Patent number: 7841081
    Abstract: The manufacturing method for an electronic parts module includes forming an adhesive layer including solder particles on the circuit forming surface in range covering at least the first and the second land parts, positioning a terminal of the active element on the second land part, sticking the active element to the base wiring layer through the adhesive layer by heating and pressing the active element onto the base wiring layer with a thermally pressing tool, and releasing the heating and pressing with the thermally pressing tool while the adhesive layer is semi-solidified, thereafter positioning a terminal of the passive element on the first land part and sticking the passive element to the base wiring layer through the adhesive layer, and solidifying the adhesive layer and melting the solder particles by laminating and thermally pressing a thermosetting sheet onto the circuit forming surface to form the resin sealing layer.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: November 30, 2010
    Assignee: Panasonic Corporation
    Inventors: Koji Motomura, Hideki Eifuku, Tadahiko Sakai
  • Patent number: 7797822
    Abstract: An electronic component mounting method of thermo-compressing and mounting electronic components onto a plurality of unit boards segmented in a multi-piece board which avoids the occurrence of adverse thermal influences on the thermosetting bonding material which is placed on the unit boards before mounting the electronic components. The thermo-compression tool used in the method is removably fitted on a thermo-compression head in an electronic component mounting apparatus; the thermo-compression tool includes a base member and a suck-up member which is smaller than a lower surface of the base member and which is fixed on the lower surface of the base member at a position displaced from a center thereof.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: September 21, 2010
    Assignee: Panasonic Corporation
    Inventors: Tadahiko Sakai, Hideki Eifuku, Teruaki Nishinaka
  • Patent number: 7793413
    Abstract: An electronic component mounting method for mounting a electronic component on a board, in which an Au bump provided at an electronic component is joined to a joining terminal formed on a board by using solder made of Sn or solder containing Sn and the electronic component is adhered to the board by means of thermosetting resin thereby to mount the electronic component on the board. The applied thermosetting resin is flown toward the outside by the lower surface of the electronic component, then a part of the solder particles contained within the thermosetting resin are made in contact with the side surfaces of the Au bumps which are heated to the temperature higher than the melting point of the solder and also another part of the solder particles are molten in a state of being sandwiched between the Au bumps and the electrodes. Thus, the diffusion of Sn into the Au bumps from the outside is promoted and so the density of Sn within the Au bumps can be increased.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: September 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Tadahiko Sakai, Hideki Eifuku
  • Publication number: 20100018048
    Abstract: It is to provide an electronic component connecting method capable of performing dehumidification within a short time without giving a thermal influence to an electronic component which has already been mounted on a wiring board. When a first connection terminal group 5 formed on a connection area 3 of a rigid board 1 is connected to a flexible board 2 where a second connection terminal group 6 has been formed by employing a thermosetting resin in an electrically conductive manner, since a connection area 3 which is heated in a step for thermally hardening the thermosetting resin is locally preheated, moisture, and oils and fats contained in the connection area 3 among such moisture, and oils and fats, which have been absorbed in the rigid board 1 are dehumidified. Thereafter, the thermosetting resin interposed between the first connection terminal group 5 and the second connection terminal group 6 is thermally hardened.
    Type: Application
    Filed: December 26, 2007
    Publication date: January 28, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Tadahiko Sakai, Hideki Eifuku
  • Publication number: 20090291314
    Abstract: The invention intends to provide an electronic component mounting adhesive that can inhibit cracks and peelings in an electronic component mounting structure obtained by joining electronic components each other from occurring and an electronic component mounting structure obtained by joining electronic components with such an electronic component mounting adhesive. In an electronic component mounting structure, a first circuit board and a second circuit board are bonded with an electronic component mounting adhesive. Here, the electronic component mounting adhesive is obtained by dispersing metal particles having the melting temperature Mp lower than the glass transition temperature Tg of a cured material of a thermosetting resin in the thermosetting resin.
    Type: Application
    Filed: September 13, 2007
    Publication date: November 26, 2009
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Tadahiko Sakai, Hideki Eifuku, Kouji Motomura
  • Publication number: 20090288767
    Abstract: By an electronic component mounting method for electrically connecting bumps to board electrodes, in a contact process for placing a thermosetting resin in a liquid glob state on the board surface and bringing the lower surface of the electronic component in contact with the thermosetting resin, the bumps are pressurized against the electrodes in positional alignment in a liquid glob distribution state where one portion of the liquid glob is arranged inside an electronic component mounting region and a remaining portion greater in liquid measure than the portion is arranged outside the electronic component mounting region. The thermosetting resin enters into a gap between the electronic component and the board by capillarity in a thermocompression bonding process. This prevents voids occurring in the sealing resin, reinforces bonded portions of bumps and electrodes with thermally cured thermosetting resin, thereby preventing bonded portion breakage due to thermal stress generated during a cooling process.
    Type: Application
    Filed: October 18, 2006
    Publication date: November 26, 2009
    Inventors: Tadahiko Sakai, Hideki Eifuku, Osamu Suzuki, Satomi Kawamoto
  • Publication number: 20090260230
    Abstract: The manufacturing method for an electronic parts module includes forming an adhesive layer including solder particles on the circuit forming surface in range covering at least the first and the second land parts, positioning a terminal of the active element on the second land part, sticking the active element to the base wiring layer through the adhesive layer by heating and pressing the active element onto the base wiring layer with a thermally pressing tool, and releasing the heating and pressing with the thermally pressing tool while the adhesive layer is semi-solidified, thereafter positioning a terminal of the passive element on the first land part and sticking the passive element to the base wiring layer through the adhesive layer, and solidifying the adhesive layer and melting the solder particles by laminating and thermally pressing a thermosetting sheet onto the circuit forming surface to form the resin sealing layer.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 22, 2009
    Applicant: Panasonic Corporation
    Inventors: Koji Motomura, Hideki Eifuku, Tadahiko Sakai
  • Publication number: 20090260229
    Abstract: The method for manufacturing an electronic parts module includes an adhesive layer forming process forming an adhesive layer including solder particles on the circuit forming surface in range covering at least the first land part and the second land part; a passive element mounting process positioning a terminal of the passive element on the first land part and sticking the passive element to the base wiring layer through the adhesive layer; an active element mounting process, after the passive element mounting process, positioning a terminal of the active element on the second land part and sticking the active element to the base wiring layer through the adhesive layer; a pressing process solidifying the adhesive layer and melting the solder particles by laminating and thermally pressing a thermosetting sheet onto the circuit forming surface so as to form the resin sealing layer.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 22, 2009
    Applicant: PANASONIC CORPORATION
    Inventors: Koji Motomura, Hideki Eifuku, Tadahiko Sakai
  • Publication number: 20090229123
    Abstract: A method for connecting a first terminal array 6 provided in a connection portion 5 of a first electric component and a second terminal array 8 provided in a connection portion 7 of a second electric component to each other in such a manner that electric continuity is established between them has two steps, that is, a step of tentatively fixing the two connection portions 5 and 7 with each other whose terminal arrays 6 and 8 are positioned with respect to each other by soldering them with solder particles 3 using a paste-like anisotropic conductive adhesive 1 in which the solder particles 3 and conductive particles 4 are dispersed in a thermosetting resin 2, and a step of finally fixing the two connection portions 5 and 7 with each other with the thermosetting resin 2 that has been set thermally. This prevents positional deviation from occurring between the two terminal arrays 6 and 8 during a transport from a tentative fixing apparatus to a final fixing apparatus.
    Type: Application
    Filed: September 13, 2007
    Publication date: September 17, 2009
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Tadahiko Sakai, Hideki Eifuku
  • Publication number: 20090205203
    Abstract: An electronic component mounting method for mounting a electronic component on a board, in which an Au bump provided at an electronic component is joined to a joining terminal formed on a board by using solder made of Sn or solder containing Sn and the electronic component is adhered to the board by means of thermosetting resin thereby to mount the electronic component on the board. The applied thermosetting resin is flown toward the outside by the lower surface of the electronic component, then a part of the solder particles contained within the thermosetting resin are made in contact with the side surfaces of the Au bumps which are heated to the temperature higher than the melting point of the solder and also another part of the solder particles are molten in a state of being sandwiched between the Au bumps and the electrodes. Thus, the diffusion of Sn into the Au bumps from the outside is promoted and so the density of Sn within the Au bumps can be increased.
    Type: Application
    Filed: September 22, 2006
    Publication date: August 20, 2009
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tadahiko Sakai, Hideki Eifuku
  • Publication number: 20090161328
    Abstract: An object is to provide an electronic components mounting adhesive capable of lowering the probability of occurrence of short-circuiting and increasing the reliability of the joining of electrodes in an electronic components mounted structure obtained by bonding electronic components to each other, as well as a manufacturing method of such an electronic components mounting adhesive, a resulting electronic component mounted structure, and a manufacturing method of such an electronic component mounted structure. In an electronic components mounted structure 10, a first circuit board 11 and a second circuit board 13 are bonded to each other with an electronic components mounting adhesive 20. The electronic components mounting adhesive 20 is such that solder particles 22 are dispersed in a thermosetting resin 21. The solder particles 22 are subjected to heating treatment in an oxygen-containing atmosphere before being dispersed in the thermosetting resin 21.
    Type: Application
    Filed: September 13, 2007
    Publication date: June 25, 2009
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Tadahiko Sakai, Hideki Eifuku, Kouji Motomura
  • Publication number: 20090126188
    Abstract: A thermo-compression tool removably fitted on a thermo-compression head in an electronic component mounting apparatus includes a base member which is removably fitted on a head-bottom face of the thermo-compression head and in which heating by heat transfer for thermo-compression is performed through the head-bottom face of the head, and a suck-up member having a suck-up surface which is formed so as to be smaller than a lower surface of the base member in correspondence to a size of the electronic component and by which the electronic component is sucked up and held, the suck-up member being fixed on the lower surface of the base member at a position displaced from a center thereof.
    Type: Application
    Filed: June 16, 2006
    Publication date: May 21, 2009
    Inventors: Tadahiko Sakai, Hideki Eifuku, Teruaki Nishinaka
  • Publication number: 20090075025
    Abstract: In an electronic component soldering method of connecting a terminal provided on a flexible substrate to an electrode of a rigid substrate, after solder-mixed resin in which solder particles are mixed in thermosetting resin has been applied onto the rigid substrate so as to cover the electrode, the flexible substrate is put on the rigid substrate and heat-pressed, whereby there are formed a resin part that bonds the both substrates by thermosetting of the thermosetting resin, and a solder part which is surrounded by the resin part and has narrowed parts in which the peripheral surface is narrowed inward in the vicinity of the terminal surface and in the vicinity of the electrode surface. Hereby, the solder parts are soldered to the electrodes and the terminal at acute contact angles so that the production of shape-discontinuities which lowers fatigue strength can be eliminated.
    Type: Application
    Filed: November 22, 2006
    Publication date: March 19, 2009
    Applicant: Matsushita Electric Industrial Co., Ltd
    Inventors: Mitsuru Ozono, Tadahiko Sakai, Hideki Eifuku
  • Publication number: 20090047534
    Abstract: To provide a components joining method and a components joining structure which can realize joining of components while securing conduction at a low electrical resistance with high reliability. In a construction in which by using a solder paste containing solder particles 5 in a thermosetting resin 3a, a rigid substrate 1 and a flexible substrate 7 are bonded by the thermosetting resin 3a, and a first terminal 2 and a second terminal 8 are electrically connected by the solder particles 5, a blending ratio of an activator of the thermosetting resin 3a in the solder paste is properly set and oxide film removed portions 2b, 8b, and 5b are partially formed in oxide films 2a, 8a, and 5a of the first terminal 2, the second terminal 8, and the solder particles 5.
    Type: Application
    Filed: April 3, 2007
    Publication date: February 19, 2009
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Tadahiko Sakai, Hideki Eifuku, Yoshiyuki Wada