Patents by Inventor Hideki Horita

Hideki Horita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9905413
    Abstract: A method of manufacturing a semiconductor device may include: performing a cycle a predetermined number of times to form an oxynitride film on a substrate, the cycle including: (a) supplying a source gas to the substrate via a first nozzle; and (b) supplying a nitriding gas and an oxidizing gas to the substrate via a second nozzle different from the first nozzle, wherein (a) and (b) are performed non-simultaneously, wherein (b) may include: (b-1) supplying only the oxidizing gas while suspending a supply of the nitriding gas; and (b-2) simultaneously supplying the nitriding gas and the oxidizing gas, wherein (b-1) and (b-2) are consecutively performed.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: February 27, 2018
    Assignee: HITACHI KOKUSAI ELECTRIC, INC.
    Inventors: Risa Yamakoshi, Takashi Ozaki, Masato Terasaki, Naonori Akae, Hideki Horita
  • Publication number: 20170298508
    Abstract: A method of manufacturing a semiconductor device, includes: forming an oxynitride film on a substrate by performing a cycle a predetermined number of times, the cycle including non-simultaneously performing supplying a precursor gas to the substrate through a first nozzle, supplying a nitriding gas to the substrate through a second nozzle, and supplying an oxidizing gas to the substrate through a third nozzle, wherein in the act of supplying the nitriding gas, an inert gas is supplied from at least one of the first nozzle and the third nozzle at a first flow rate, and in the act of supplying the oxidizing gas, an inert gas is supplied from the second nozzle at a second flow rate larger than the first flow rate.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 19, 2017
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Risa YAMAKOSHI, Masato TERASAKI, Takashi OZAKI, Naonori AKAE, Hideki HORITA
  • Publication number: 20170178889
    Abstract: A method of manufacturing a semiconductor device may include: performing a cycle a predetermined number of times to form an oxynitride film on a substrate, the cycle including: (a) supplying a source gas to the substrate via a first nozzle; and (b) supplying a nitriding gas and an oxidizing gas to the substrate via a second nozzle different from the first nozzle, wherein (a) and (b) are performed non-simultaneously, wherein (b) may include: (b-1) supplying only the oxidizing gas while suspending a supply of the nitriding gas; and (b-2) simultaneously supplying the nitriding gas and the oxidizing gas, wherein (b-1) and (b-2) are consecutively performed.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Risa YAMAKOSHI, Takashi OZAKI, Masato TERASAKI, Naonori AKAE, Hideki HORITA
  • Patent number: 9552980
    Abstract: A method of manufacturing a semiconductor device includes: pre-treating a surface of a substrate by supplying an oxygen-containing gas and a hydrogen-containing gas to the substrate heated in a process chamber under a pressure less than atmospheric pressure; and forming a film on the pre-treated substrate by performing a cycle a predetermined number of times. The cycle includes: supplying a precursor gas to the substrate in the process chamber; and supplying a reaction gas to the substrate in the process chamber.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: January 24, 2017
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Takashi Ozaki, Hideki Horita
  • Publication number: 20160298235
    Abstract: A cleaning method includes (a) providing a process chamber after forming an oxide film on a substrate in the process chamber formed by a reaction tube and a manifold supporting the reaction tube by performing a cycle a predetermined number of times, the cycle including supplying a source gas to the substrate through a first nozzle in the manifold extending upward to an inside of the reaction tube, and supplying an oxidizing gas to the substrate through a second nozzle in the manifold extending upward to the inside of the reaction tube; and (b) cleaning an inside of the process chamber. The step (b) includes a first cleaning process of supplying a hydrogen fluoride gas into the reaction tube through the second nozzle; and a second cleaning process of supplying a hydrogen fluoride gas onto an inner wall surface of the manifold through a third nozzle disposed in the manifold.
    Type: Application
    Filed: June 23, 2016
    Publication date: October 13, 2016
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Masato TERASAKI, Naonori AKAE, Hideki HORITA
  • Publication number: 20160284539
    Abstract: A technique capable of suppressing the generation of foreign matter in a process container involves a method of manufacturing a semiconductor device including: (a) supplying a source gas to a substrate in a process container; (b) supplying an inert gas to an inner wall of an opening of the process container at a first flow rate while performing (a); (c) supplying a reactive gas to the substrate; and (d) supplying the inert gas to the inner wall at a second flow rate lower than the first flow rate while performing (c).
    Type: Application
    Filed: March 3, 2016
    Publication date: September 29, 2016
    Inventors: Hideki HORITA, Risa YAMAKOSHI, Masato TERASAKI
  • Patent number: 9401272
    Abstract: A cleaning method includes (a) providing a process chamber after forming an oxide film on a substrate in the process chamber formed by a reaction tube and a manifold supporting the reaction tube by performing a cycle a predetermined number of times, the cycle including supplying a source gas to the substrate through a first nozzle in the manifold extending upward to an inside of the reaction tube, and supplying an oxidizing gas to the substrate through a second nozzle in the manifold extending upward to the inside of the reaction tube; and (b) cleaning an inside of the process chamber. The step (b) includes a first cleaning process of supplying a hydrogen fluoride gas into the reaction tube through the second nozzle; and a second cleaning process of supplying a hydrogen fluoride gas onto an inner wall surface of the manifold through a third nozzle disposed in the manifold.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: July 26, 2016
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Masato Terasaki, Naonori Akae, Hideki Horita
  • Publication number: 20140315393
    Abstract: A method of manufacturing a semiconductor device includes: pre-treating a surface of a substrate by supplying an oxygen-containing gas and a hydrogen-containing gas to the substrate heated in a process chamber under a pressure less than atmospheric pressure; and forming a film on the pre-treated substrate by performing a cycle a predetermined number of times. The cycle includes: supplying a precursor gas to the substrate in the process chamber; and supplying a reaction gas to the substrate in the process chamber.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 23, 2014
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Takashi OZAKI, Hideki HORITA
  • Publication number: 20140287594
    Abstract: A cleaning method includes (a) providing a process chamber after forming an oxide film on a substrate in the process chamber formed by a reaction tube and a manifold supporting the reaction tube by performing a cycle a predetermined number of times, the cycle including supplying a source gas to the substrate through a first nozzle in the manifold extending upward to an inside of the reaction tube, and supplying an oxidizing gas to the substrate through a second nozzle in the manifold extending upward to the inside of the reaction tube; and (b) cleaning an inside of the process chamber. The step (b) includes a first cleaning process of supplying a hydrogen fluoride gas into the reaction tube through the second nozzle; and a second cleaning process of supplying a hydrogen fluoride gas onto an inner wall surface of the manifold through a third nozzle disposed in the manifold.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 25, 2014
    Applicant: Hitachi Kokusai Electric Inc.
    Inventors: Masato TERASAKI, Naonori AKAE, Hideki HORITA
  • Patent number: 8227346
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 24, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Publication number: 20120077350
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Application
    Filed: November 29, 2011
    Publication date: March 29, 2012
    Inventors: Hironobu MIYA, Kazuyuki TOYODA, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Publication number: 20120034790
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Application
    Filed: March 31, 2009
    Publication date: February 9, 2012
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Patent number: 8105957
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: January 31, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Taketoshi Sato, Masayuki Asai, Norikazu Mizuno, Masanori Sakai, Kazuyuki Okuda, Hideki Horita
  • Patent number: 8039404
    Abstract: A production method for a semiconductor device comprising the first step of supplying a first reaction material to a substrate housed in a processing chamber to subject to a ligand substitution reaction a ligand as a reaction site existing on the surface of the substrate and the ligand of the first reaction material, the second step of removing the excessive first reaction material from the processing chamber, the third step of supplying a second reaction material to the substrate to subject a ligand substituted by the first step to a ligand substitution reaction with respect to a reaction site, the fourth step of removing the excessive second reaction material from the processing chamber, and a fifth step of supplying a third reaction material excited by plasma to the substrate to subject a ligand, not subjected to a substitution reaction with respect to a reaction site in the third step, to a ligand substitution reaction with respect to a reaction site, wherein the steps 1-5 are repeated a specified number
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: October 18, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Publication number: 20100233887
    Abstract: A production method for a semiconductor device comprising the first step of supplying a first reaction material to a substrate housed in a processing chamber to subject to a ligand substitution reaction a ligand as a reaction site existing on the surface of the substrate and the ligand of the first reaction material, the second step of removing the excessive first reaction material from the processing chamber, the third step of supplying a second reaction material to the substrate to subject a ligand substituted by the first step to a ligand substitution reaction with respect to a reaction site, the fourth step of removing the excessive second reaction material from the processing chamber, and a fifth step of supplying a third reaction material excited by plasma to the substrate to subject a ligand, not subjected to a substitution reaction with respect to a reaction site in the third step, to a ligand substitution reaction with respect to a reaction site, wherein the steps 1-5 are repeated a specified number
    Type: Application
    Filed: May 27, 2010
    Publication date: September 16, 2010
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Patent number: 7779785
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: August 24, 2010
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Publication number: 20090280652
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Application
    Filed: March 31, 2009
    Publication date: November 12, 2009
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Publication number: 20080124945
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Application
    Filed: February 15, 2006
    Publication date: May 29, 2008
    Applicant: Hitachi Kokusa Electric Inc.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita