Patents by Inventor Hideki Inokuma

Hideki Inokuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170194254
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, and a plurality of columnar parts. The stacked body is provided on the substrate. The stacked body includes a plurality of electrode films stacked separately from each other. The plurality of columnar parts is provided in the stacked body. Each of the plurality of columnar parts includes a semiconductor pillar extending in a stacking direction of the stacked body, and a charge storage film provided between the semiconductor pillar and the stacked body. The plurality of electrode films includes a first electrode film provided in upper layers of the stacked body and a second electrode film provided in lower layers of the stacked body. A thickness of the first electrode film is thicker than a thickness of the second electrode film. The first electrode film is provided with a void.
    Type: Application
    Filed: July 5, 2016
    Publication date: July 6, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Wataru SAKAMOTO, Hideki INOKUMA, Osamu MATSUURA
  • Publication number: 20170077108
    Abstract: According to one embodiment, it includes a stacked body including N-number of layers (N is an integer of 2 or more) stacked on a semiconductor substrate, opening portions penetrating the stacked body in a stacking direction, columnar bodies respectively disposed in the opening portions, and a slit dividing M-number of layers (M is an integer of 1 or more and (N?2) or less) of the stacked body in a horizontal direction from above, wherein the slit is formed with lateral surfaces respectively having a spatial periodicity in a horizontal plane.
    Type: Application
    Filed: September 6, 2016
    Publication date: March 16, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Genki KAWAGUCHI, Masanari FUJITA, Hideki INOKUMA, Osamu MATSUURA, Takeshi IMAMURA, Hideo WADA, Makoto WATANABE, Hajime KANEKO, Kenichi FUJII, Takanobu ITOH
  • Publication number: 20170077132
    Abstract: A non-volatile memory device comprises a first electrode, a second electrode stacked on the first electrode, a semiconductor layer extending in a first direction through the first electrode and the second electrode, charge storage parts respectively provided between the first electrode and the semiconductor layer and between the second electrode and the semiconductor layer, and a barrier body arranged with the first electrode and the second electrode in a second direction orthogonal to the first direction and extending in the first direction. A distance between the second electrode and the barrier body is wider in the second direction than a distance between the first electrode and the barrier body.
    Type: Application
    Filed: March 8, 2016
    Publication date: March 16, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Hideki INOKUMA
  • Publication number: 20160013128
    Abstract: A method for manufacturing a semiconductor device includes forming a metal-containing layer over a semiconductor substrate, forming an insulating film to cover the semiconductor substrate and the metal-containing layer, forming a first contact hole that penetrates through the insulating film to reach the semiconductor substrate, forming a second contact hole that penetrates through the insulating film to reach the metal-containing layer, forming a first conductive plug on a portion, exposed through the first contact hole, of the semiconductor substrate and including a first material, forming a second conductive plug on the first conductive plug and including a second material, the semiconductor substrate being closer to a lower surface of the second conductive plug than to an upper surface of the metal-containing layer, and forming a third conductive plug on a portion, exposed through the second contact hole, of the metal-containing layer, the third conductive plug including a third material.
    Type: Application
    Filed: January 29, 2015
    Publication date: January 14, 2016
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kenji AOYAMA, Hideki Inokuma, Kana Hirayama
  • Patent number: 9219071
    Abstract: A semiconductor device includes a substrate, a plurality of element regions that are partitioned in a line-and-space shape and extend in a first direction in the substrate, a plurality of selection gates that are formed on the substrate to extend in a second direction intersecting the first direction. In addition, the semiconductor device includes a contact region that includes a plurality of contact plugs which are provided between two selection gates adjacent to each other and are connected to the respective element regions in the substrate. Further, the contact plug includes an upper portion and a lower portion. The upper portion has a first width and is formed of a first conductive film and a second conductive film. The lower portion has a second width smaller than the first width and is formed of the first conductive film.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: December 22, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideki Inokuma
  • Publication number: 20150364479
    Abstract: A semiconductor device includes a substrate, a plurality of element regions that are partitioned in a line-and-space shape and extend in a first direction in the substrate, a plurality of selection gates that are formed on the substrate to extend in a second direction intersecting the first direction. In addition, the semiconductor device includes a contact region that includes a plurality of contact plugs which are provided between two selection gates adjacent to each other and are connected to the respective element regions in the substrate. Further, the contact plug includes an upper portion and a lower portion. The upper portion has a first width and is formed of a first conductive film and a second conductive film. The lower portion has a second width smaller than the first width and is formed of the first conductive film.
    Type: Application
    Filed: March 3, 2015
    Publication date: December 17, 2015
    Inventor: Hideki INOKUMA
  • Patent number: 9099646
    Abstract: A manufacturing method includes forming a laminated body on a substrate. A mask layer is formed on the laminated body, and then a portion of the mask layer is removed to form an opening. Then, using the mask layer as a template, a first portion of the laminated body is removed to expose a portion of the substrate beneath the laminated body. The substrate is processed to alter the ratio between the size of mask opening and the removed first portion. A variable resistance layer is then deposited on exposed portions of the mask layer, the laminated body, and the substrate. Then the variable resistance layer is processed to remove at least a portion covering the substrate to permit contact with the underlying substrate. A second electrode layer is deposited to fill the removed portions of the laminated body.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: August 4, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideki Inokuma, Kazuhiko Yamamoto
  • Publication number: 20150069485
    Abstract: A semiconductor device includes memory cell units, each including memory cell transistors, a first transistor at a first end of the memory cell transistors, and a second transistor at a second end of the memory cell transistors. The memory cell units are arranged so that adjacent memory cell units have first transistors thereof facing each other or second transistors thereof facing each other, and so that a distance between the first transistors of the adjacent memory cell units is larger than a distance between the second transistors of the adjacent memory cell units. The semiconductor device further includes a first silicon nitride layer covering a first diffusion layer of the first transistors, a second silicon nitride layer covering a second diffusion layer of the second transistors. A thickness of the second silicon nitride layer is smaller than a thickness of the first silicon nitride layer.
    Type: Application
    Filed: March 3, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira YOTSUMOTO, Kotaro FUJII, Hideki INOKUMA, Akira MINO
  • Patent number: 8822968
    Abstract: According to one embodiment, a nonvolatile memory device includes a first wiring layer. The device includes a second wiring layer intersecting with the first wiring layer. And the device includes a first memory layer provided at a position where the first wiring layer and the second wiring layer intersect. And the first memory layer contacts with the first wiring layer, and the first wiring layer is a layer which is capable of supplying a metal ion to the first memory layer.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 2, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideki Inokuma
  • Patent number: 8664632
    Abstract: According to one embodiment, a memory device includes a first electrode, a second electrode, and a variable resistance film. The variable resistance film is connected between the first electrode and the second electrode. The first electrode includes a metal contained in a matrix made of a conductive material. A cohesive energy of the metal is lower than a cohesive energy of the conductive material. A concentration of the metal at a central portion of the first electrode in a width direction thereof is higher than concentrations of the metal in two end portions of the first electrode in the width direction.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Matsushita, Shosuke Fujii, Yoshifumi Nishi, Akira Takashima, Takayuki Ishikawa, Hidenori Miyagawa, Takashi Haimoto, Yusuke Arayashiki, Hideki Inokuma
  • Publication number: 20140042383
    Abstract: A manufacturing method includes forming a laminated body on a substrate. A mask layer is formed on the laminated body, and then a portion of the mask layer is removed to form an opening. Then, using the mask layer as a template, a first portion of the laminated body is removed to expose a portion of the substrate beneath the laminated body. The substrate is processed to alter the ratio between the size of mask opening and the removed first portion. A variable resistance layer is then deposited on exposed portions of the mask layer, the laminated body, and the substrate. Then the variable resistance layer is processed to remove at least a portion covering the substrate to permit contact with the underlying substrate. A second electrode layer is deposited to fill the removed portions of the laminated body.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 13, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hideki INOKUMA, Kazuhiko Yamamoto
  • Publication number: 20130248796
    Abstract: According to one embodiment, a nonvolatile memory device includes a first wiring layer. The device includes a second wiring layer intersecting with the first wiring layer. And the device includes a first memory layer provided at a position where the first wiring layer and the second wiring layer intersect. And the first memory layer contacts with the first wiring layer, and the first wiring layer is a layer which is capable of supplying a metal ion to the first memory layer.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 26, 2013
    Inventor: Hideki INOKUMA
  • Publication number: 20130228736
    Abstract: According to one embodiment, a memory device includes a first electrode, a second electrode, and a variable resistance film. The variable resistance film is connected between the first electrode and the second electrode. The first electrode includes a metal contained in a matrix made of a conductive material. A cohesive energy of the metal is lower than a cohesive energy of the conductive material. A concentration of the metal at a central portion of the first electrode in a width direction thereof is higher than concentrations of the metal in two end portions of the first electrode in the width direction.
    Type: Application
    Filed: August 30, 2012
    Publication date: September 5, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Daisuke MATSUSHITA, Shosuke Fujii, Yoshifumi Nishi, Akira Takashima, Takayuki Ishikawa, Hidenori Miyagawa, Takashi Haimoto, Yusuke Arayashiki, Hideki Inokuma
  • Patent number: 8004010
    Abstract: In a semiconductor device with a shared contact, a gate electrode is formed via a gate insulating film on a semiconductor substrate and a sidewall insulating film is formed on both side faces of the gate electrode. At least one of the surface parts of the semiconductor substrate adjacent to both sides of the gate electrode is removed beyond the lower part of the sidewall insulating film and to the underside of the gate electrode. Then, the gate insulating film exposed in the remove part is removed. An impurity-doped semiconductor layer is formed in the part where the semiconductor substrate and the gate insulating film have been removed.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 23, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideki Inokuma
  • Publication number: 20110180882
    Abstract: According to an aspect of the invention, there is provided a semiconductor device including a first semiconductor element formed on a semiconductor substrate and using electrons as carriers, and a second semiconductor element formed on the semiconductor substrate and using holes as carriers, a first insulating film and a second insulating film formed on source/drain regions and gate electrodes of the first element and the second element, the first insulating film having tensile stress with respect to the first element, and the second insulating film having compression stress with respect to the second element, and sidewall spacers of the gate electrodes of the first element and the second element, at least portions of the sidewall spacers being removed, wherein at least one of the first insulating film and the second insulating film does not close a spacing between the gate electrodes of the first element and the second element.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 28, 2011
    Inventor: Hideki INOKUMA
  • Patent number: 7947554
    Abstract: According to an aspect of the invention, there is provided a semiconductor device including a first semiconductor element formed on a semiconductor substrate and using electrons as carriers, and a second semiconductor element formed on the semiconductor substrate and using holes as carriers, a first insulating film and a second insulating film formed on source/drain regions and gate electrodes of the first element and the second element, the first insulating film having tensile stress with respect to the first element, and the second insulating film having compression stress with respect to the second element, and sidewall spacers of the gate electrodes of the first element and the second element, at least portions of the sidewall spacers being removed, wherein at least one of the first insulating film and the second insulating film does not close a spacing between the gate electrodes of the first element and the second element.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 24, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideki Inokuma
  • Publication number: 20100207209
    Abstract: A semiconductor device having a small parasitic resistance and a high driving current is provided. The semiconductor device includes a fin portion that includes a pair of source/drain regions located on both end sides and a channel region sandwiched between the pair of source/drain regions; films that are formed on both sides in a channel-width direction of the fin portion; a gate electrode that is provided so as to stride across the channel region of the fin portion; a gate insulating film that is interposed between the gate electrode and the channel region; and a stress applying layer that applies a stress to the channel region of the fin portion, an upper surface and side surfaces of the source/drain region being coated with the stress applying layer in the fin portion, a lower end surface of the stress applying layer being in contact with the film with no gap.
    Type: Application
    Filed: September 21, 2009
    Publication date: August 19, 2010
    Inventor: Hideki Inokuma
  • Publication number: 20090283834
    Abstract: A MOS semiconductor device including MOSFETs each of which has a gate portion formed on a semiconductor substrate and source/drain regions includes sidewall insulating films formed on the side portions of the gate portions in the gate length direction, alloy layers formed on the source/drain regions, taper adjusting insulating films that are formed on the side portions of the sidewall insulating films and in which a taper angle made between a cross section thereof in the gate length direction and the substrate surface is set smaller than a taper angle made between the sidewall insulating film and the substrate surface, a stress-causing insulating film that applies strains to channels and is formed to cover the gate portions, sidewall insulating films and taper adjusting insulating films, and an interlayer insulating film formed on the stress-causing insulating film.
    Type: Application
    Filed: March 19, 2009
    Publication date: November 19, 2009
    Inventor: Hideki Inokuma
  • Publication number: 20080203429
    Abstract: In a semiconductor device with a shared contact, a gate electrode is formed via a gate insulating film on a semiconductor substrate and a sidewall insulating film is formed on both side faces of the gate electrode. At least one of the surface parts of the semiconductor substrate adjacent to both sides of the gate electrode is removed beyond the lower part of the sidewall insulating film and to the underside of the gate electrode. Then, the gate insulating film exposed in the remove part is removed. An impurity-doped semiconductor layer is formed in the part where the semiconductor substrate and the gate insulating film have been removed.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 28, 2008
    Inventor: Hideki INOKUMA
  • Publication number: 20080079097
    Abstract: According to an aspect of the invention, there is provided a semiconductor device including a first semiconductor element formed on a semiconductor substrate and using electrons as carriers, and a second semiconductor element formed on the semiconductor substrate and using holes as carriers, a first insulating film and a second insulating film formed on source/drain regions and gate electrodes of the first element and the second element, the first insulating film having tensile stress with respect to the first element, and the second insulating film having compression stress with respect to the second element, and sidewall spacers of the gate electrodes of the first element and the second element, at least portions of the sidewall spacers being removed, wherein at least one of the first insulating film and the second insulating film does not close a spacing between the gate electrodes of the first element and the second element.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 3, 2008
    Inventor: Hideki Inokuma