Patents by Inventor Hideto Hashiguchi

Hideto Hashiguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11101313
    Abstract: [Object] To provide a solid-state imaging device and an electronic apparatus with further improved performance. [Solution] A solid-state imaging device including: a first substrate on which a pixel unit is formed, and a first semiconductor substrate and a first multi-layered wiring layer are stacked; a second substrate on which a circuit having a predetermined function is formed, and a second semiconductor substrate and a second multi-layered wiring layer are stacked; and a third substrate on which a circuit having a predetermined function is formed, and a third semiconductor substrate and a third multi-layered wiring layer are stacked. The first substrate, the second substrate, and the third substrate are stacked in this order. The pixel unit has pixels arranged thereon. The first substrate and the second substrate are bonded together with the first multi-layered wiring layer and the second semiconductor substrate opposed to each other.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: August 24, 2021
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hiroshi Horikoshi, Minoru Ishida, Reijiroh Shohji, Tadashi Iijima, Takatoshi Kameshima, Hideto Hashiguchi, Ikue Mitsuhashi, Masaki Haneda
  • Publication number: 20210217797
    Abstract: A solid-state imaging device including: a first substrate having a pixel unit, and a first semiconductor substrate and a first wiring layer; a second substrate with a circuit, and a second semiconductor substrate and a second wiring layer; and a third substrate with a circuit, and a third semiconductor substrate and a third wiring layer. The first and second substrates are bonded together such that the first wiring layer and the second semiconductor substrate are opposed to each other. The device includes a first coupling structure for electrically coupling a circuit of the first substrate and the circuit of the second substrate. The first coupling structure includes a via in which electrically-conductive materials are embedded in a first through hole that exposes a wiring line in the first wiring layer and in a second through hole that exposes a wiring line in the second wiring layer or a film-formed structure.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hideto HASHIGUCHI, Reijiroh SHOHJI, Hiroshi HORIKOSHI, Ikue MITSUHASHI, Tadashi IIJIMA, Takatoshi KAMESHIMA, Minoru ISHIDA, Masaki HANEDA
  • Patent number: 10998369
    Abstract: A solid-state imaging device including: a first substrate having a pixel unit, and a first semiconductor substrate and a first wiring layer; a second substrate with a circuit, and a second semiconductor substrate and a second wiring layer; and a third substrate with a circuit, and a third semiconductor substrate and a third wiring layer. The first and second substrates are bonded together such that the first wiring layer and the second semiconductor substrate are opposed to each other. The device includes a first coupling structure for electrically coupling a circuit of the first substrate and the circuit of the second substrate. The first coupling structure includes a via in which electrically-conductive materials are embedded in a first through hole that exposes a wiring line in the first wiring layer and in a second through hole that exposes a wiring line in the second wiring layer or a film-formed structure.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: May 4, 2021
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Hideto Hashiguchi, Reijiroh Shohji, Hiroshi Horikoshi, Ikue Mitsuhashi, Tadashi Iijima, Takatoshi Kameshima, Minoru Ishida, Masaki Haneda
  • Publication number: 20210104572
    Abstract: There is provided a solid-state imaging device including first, second, and third substrates stacked in this order. The first substrate includes a first semiconductor substrate and a first wiring layer. A pixel unit is formed on the first semiconductor substrate. The second substrate includes a second semiconductor substrate and a second wiring layer. The third substrate includes a third semiconductor substrate and a third wiring layer. A first coupling structure couples two of the first, second, and third substrates to each other includes a via. The via has a structure in which electrically-conductive materials are embedded in one through hole and another through hole, or a structure in which films including electrically-conductive materials are formed on inner walls of the through holes. The one through hole exposes a first wiring line in one of the wiring layers. The other through hole exposes a second wiring line in another wiring layer.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 8, 2021
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Takatoshi KAMESHIMA, Hideto HASHIGUCHI, Ikue MITSUHASHI, Hiroshi HORIKOSHI, Reijiroh SHOHJI, Minoru ISHIDA, Tadashi IIJIMA, Masaki HANEDA
  • Publication number: 20210104570
    Abstract: [Object] To provide a solid-state imaging device and an electronic apparatus with further improved performance.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 8, 2021
    Inventors: IKUE MITSUHASHI, REIJIROH SHOHJI, MINORU ISHIDA, TADASHI IIJIMA, TAKATOSHI KAMESHIMA, HIDETO HASHIGUCHI, HIROSHI HORIKOSHI, MASAKI HANEDA
  • Publication number: 20210104571
    Abstract: There is provided a solid-state imaging device including: a first substrate including a first semiconductor substrate and a first wiring layer, the first semiconductor substrate having a pixel unit with pixels; a second substrate including a second semiconductor substrate and a second wiring layer, the second semiconductor substrate having a circuit with a predetermined function; and a third substrate including a third semiconductor substrate and a third wiring layer, the third semiconductor substrate having a circuit with a predetermined function, the first, second, and third substrates being stacked in this order, the first substrate and the second substrate being bonded together with the first wiring layer and the second wiring layer opposed to each other, a first coupling structure on bonding surfaces of the first substrate and the second substrate, and including an electrode junction structure with electrodes formed on the respective bonding surfaces in direct contact with each other.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 8, 2021
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Reijiroh SHOHJI, Masaki HANEDA, Hiroshi HORIKOSHI, Minoru ISHIDA, Takatoshi KAMESHIMA, Ikue MITSUHASHI, Hideto HASHIGUCHI, Tadashi IIJIMA
  • Publication number: 20200243591
    Abstract: [Object] To further improve performance of a solid-state imaging device. [Solution] There is provided a solid-state imaging device including: a first substrate; a second substrate; and a third substrate that are stacked in this order. The first substrate includes a first semiconductor substrate and a first multi-layered wiring layer stacked on the first semiconductor substrate. The first semiconductor substrate has a pixel unit formed thereon. The pixel unit has pixels arranged thereon. The second substrate includes a second semiconductor substrate and a second multi-layered wiring layer stacked on the second semiconductor substrate. The second semiconductor substrate has a circuit formed thereon. The circuit has a predetermined function. The third substrate includes a third semiconductor substrate and a third multi-layered wiring layer stacked on the third semiconductor substrate. The third semiconductor substrate has a circuit formed thereon. The circuit has a predetermined function.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 30, 2020
    Inventors: TADASHI IIJIMA, TAKATOSHI KAMESHIMA, IKUE MITSUHASHI, HIROSHI HORIKOSHI, HIDETO HASHIGUCHI, REIJIROH SHOHJI, MINORU ISHIDA, MASAKI HANEDA
  • Publication number: 20200105814
    Abstract: A solid-state imaging device including: a first substrate having a pixel unit, and a first semiconductor substrate and a first wiring layer; a second substrate with a circuit, and a second semiconductor substrate and a second wiring layer; and a third substrate with a circuit, and a third semiconductor substrate and a third wiring layer. The first and second substrates are bonded together such that the first wiring layer and the second semiconductor substrate are opposed to each other. The device includes a first coupling structure for electrically coupling a circuit of the first substrate and the circuit of the second substrate. The first coupling structure includes a via in which electrically-conductive materials are embedded in a first through hole that exposes a wiring line in the first wiring layer and in a second through hole that exposes a wiring line in the second wiring layer or a film-formed structure.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 2, 2020
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hideto HASHIGUCHI, Reijiroh SHOHJI, Hiroshi HORIKOSHI, Ikue MITSUHASHI, Tadashi IIJIMA, Takatoshi KAMESHIMA, Minoru ISHIDA, Masaki HANEDA
  • Publication number: 20200105813
    Abstract: [Object] To provide a solid-state imaging device and an electronic apparatus with further improved performance. [Solution] A solid-state imaging device including: a first substrate on which a pixel unit is formed, and a first semiconductor substrate and a first multi-layered wiring layer are stacked; a second substrate on which a circuit having a predetermined function is formed, and a second semiconductor substrate and a second multi-layered wiring layer are stacked; and a third substrate on which a circuit having a predetermined function is formed, and a third semiconductor substrate and a third multi-layered wiring layer are stacked. The first substrate, the second substrate, and the third substrate are stacked in this order. The pixel unit has pixels arranged thereon. The first substrate and the second substrate are bonded together in a manner that the first multi-layered wiring layer and the second semiconductor substrate are opposed to each other.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 2, 2020
    Inventors: HIDETO HASHIGUCHI, REIJIROH SHOHJI, HIROSHI HORIKOSHI, IKUE MITSUHASHI, TADASHI IIJIMA, TAKATOSHI KAMESHIMA, MINORU ISHIDA, MASAKI HANEDA
  • Publication number: 20200098815
    Abstract: [Object] To further improve performance of a solid-state imaging device.
    Type: Application
    Filed: March 23, 2018
    Publication date: March 26, 2020
    Inventors: TAKATOSHI KAMESHIMA, HIDETO HASHIGUCHI, IKUE MITSUHASHI, HIROSHI HORIKOSHI, REIJIROH SHOHJI, MINORU ISHIDA, TADASHI IIJIMA, MASAKI HANEDA
  • Publication number: 20200091217
    Abstract: [Object] To provide a solid-state imaging device and an electronic apparatus with further improved performance. [Solution] A solid-state imaging device including: a first substrate on which a pixel unit is formed, and a first semiconductor substrate and a first multi-layered wiring layer are stacked; a second substrate on which a circuit having a predetermined function is formed, and a second semiconductor substrate and a second multi-layered wiring layer are stacked; and a third substrate on which a circuit having a predetermined function is formed, and a third semiconductor substrate and a third multi-layered wiring layer are stacked. The first substrate, the second substrate, and the third substrate are stacked in this order. The pixel unit has pixels arranged thereon. The first substrate and the second substrate are bonded together with the first multi-layered wiring layer and the second semiconductor substrate opposed to each other.
    Type: Application
    Filed: March 23, 2018
    Publication date: March 19, 2020
    Inventors: HIROSHI HORIKOSHI, MINORU ISHIDA, REIJIROH SHOHJI, TADASHI IIJIMA, TAKATOSHI KAMESHIMA, HIDETO HASHIGUCHI, IKUE MITSUHASHI, MASAKI HANEDA
  • Patent number: 10408350
    Abstract: To provide a gland packing capable of suppressing a fluid from permeating into a packing body or leaking from the packing body through a contact surface between a laminating member and a protrusion of the packing body. The gland packing includes an annular packing body (21) which is formed by winding an expanded graphite tape material in a spiral shape and a laminating member (22) that is bonded to an axial end surface of the packing body (21) and is formed of an annular expanded graphite sheet material, the axial end surface of the packing body (21) being provided with a protrusion (24) facing and contacting an inner peripheral portion or an outer peripheral portion of the laminating member (22) in the radial direction, in which a contact surface (27) between the protrusion (24) and the laminating member (22) is formed so that a radius changes in at least a part in the axial direction.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: September 10, 2019
    Assignee: NIPPON PILLAR PACKING CO., LTD.
    Inventors: Hideto Hashiguchi, Go Takayama
  • Publication number: 20180080560
    Abstract: A gland packing includes an annular packing body which is formed by winding an expanded graphite tape material in a spiral shape and a laminating member that is bonded to an axial end surface of the packing body and is formed of an annular expanded graphite sheet material, the axial end surface of the packing body being provided with a protrusion facing and contacting an inner peripheral portion or an outer peripheral portion of the laminating member in the radial direction, in which a contact surface between the protrusion and the laminating member is formed so that a radius changes in at least a part in the axial direction.
    Type: Application
    Filed: March 18, 2016
    Publication date: March 22, 2018
    Applicant: NIPPON PILLAR PACKING CO., LTD.
    Inventors: Hideto HASHIGUCHI, Go TAKAYAMA
  • Publication number: 20030193147
    Abstract: The present invention relates to a filler material (1) for a spiral wound gasket, and to a spiral wound gasket (W) using the fillermaterial (1). The fillermaterial (1) and the spiral wound gasket (W) according to the invention can be applied to various pipe joints and a joint portions of fluid equipments for sealing fluid such as liquid and gaseous body. The filler material (1) of the invention is obtained by removing, by blast treatment, a high density portion on a front surface (2A) or a back surface (2B) of a tape-like expansive graphite tape (2) formed by integrally pressurizing expanded graphite particles. The spiral wound gasket (W) is obtained by overlapping the filler material (1) and a hoop material (5) made of metal band plate with each other and winding them in the form of a spiral. The spiral wound gasket (W) is superior in productivity, and in flexibility, bending property and pliability, and exhibit excellent sealing property even at a low surface pressure.
    Type: Application
    Filed: October 5, 1998
    Publication date: October 16, 2003
    Inventors: HIDETO HASHIGUCHI, TAKAHISA UEDA, TAKESHI MIYOSHI
  • Patent number: 6382633
    Abstract: A shaft seal apparatus that exhibits a good and reliable sealing performance, even when a rotating shaft undergoes axial vibration, eccentric revolution, or the like. This shaft seal apparatus has gland packings (2) stuffed in a sealed space (10) formed between a rotating shaft (9) and a stuffing box (1), with gland packings (2) pressed between a first packing gland (3) on a sealed liquid region side (7) and a second packing gland (4) on an atmospheric region side (8). The first packing gland (3) is fixed to a rotary equipment body (6) and the second packing gland (4) is to the stuffing box (1). A screw bolt (15) extending in the axial direction of the rotating shaft (9) is anchored to the first packing gland (3). The stuffing box (1) is provided with a through hole (16) larger than the screw bolt (15) in the flange (1a). The screw bolt (15) running through the through hole (16) has a tightening nut (17) thereon at a place which is out of and backward of the hole (16).
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: May 7, 2002
    Assignee: Nippon Pillar Packing Co., Ltd.
    Inventors: Hideto Hashiguchi, Takahisa Ueda
  • Patent number: 6195867
    Abstract: A method of producing a spiral wound gasket for sealing fluid such as a liquid including water and oil, and a gaseous body including vapor and gas and a device for producing the spiral wound gasket. The tip portion of a hoop material is cut and raised thereby forming a checking stepped-portion. The checking stepped-portion is caught by a checking pawl, so as to wind the hoop material around a core drum. After winding the hoop material around the outer periphery of the core drum, at least once, the checking pawl is retracted from the outer periphery of the core drum, thereby separating the checking pawl from the checking stepped-portion. The spiral wound gasket produced by the present invention exhibits an excellent sealing property. Moreover, it also has an excellent durability.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: March 6, 2001
    Assignee: Nippon Pillar Packing Co., Ltd.
    Inventors: Hideto Hashiguchi, Masahiko Takaoka, Keiji Okada, Shoji Kato, Masao Konaka