Patents by Inventor Hieu Bui

Hieu Bui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220133474
    Abstract: A transcatheter prosthetic heart valve includes a stent frame and a leaflet material. The stent frame includes a top portion and a bottom portion. The leaflet material includes a lower portion attached to the stent frame and an upper portion that includes leaflets capable of moving between an open configuration and a closed configuration. At least a portion of the leaflet material weaves through the stent frame. The transcatheter prosthetic heart valve also includes one or more reinforcement components coupled to the stent frame and/or to the leaflet material to enhance performance of the transcatheter heart valve.
    Type: Application
    Filed: January 14, 2022
    Publication date: May 5, 2022
    Applicants: Ohio State Innovation Foundation, Georgia Institute of Technology, Colorado State University Research Foundation
    Inventors: Hieu Bui, Lakshmi Prasad Dasi, Megan Heitkemper, Susan James, Nipa Khair
  • Patent number: 11255786
    Abstract: The stiffness and topology of ultra-small circular DNAs and DNA/peptide hybrids are exploited to create a transducer of enzyme activity with low error rates. The modularity and flexibility of the concept are illustrated by demonstrating various transducers that respond to either specific restriction endonucleases or to specific proteases. In all cases the output is a DNA oligo signal that, as we show, can readily be converted directly to an optical readout, or can serve as input for further processing, for example, using DNA logic or amplification. By exploiting the DNA hairpin (or stem-loop) structure and the phenomenon of strand displacement, an enzyme signal is converted into a DNA signal, in the manner of a transducer. This is valuable because a DNA signal can be readily amplified, combined, and processed as information.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: February 22, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Mario Ancona, Hieu Bui
  • Publication number: 20210325303
    Abstract: The stiffness and topology of ultra-small circular DNAs and DNA/peptide hybrids are exploited to create a transducer of enzyme activity with low error rates. The modularity and flexibility of the concept are illustrated by demonstrating various transducers that respond to either specific restriction endonucleases or to specific proteases. In all cases the output is a DNA oligo signal that, as we show, can readily be converted directly to an optical readout, or can serve as input for further processing, for example, using DNA logic or amplification. By exploiting the DNA hairpin (or stem-loop) structure and the phenomenon of strand displacement, an enzyme signal is converted into a DNA signal, in the manner of a transducer. This is valuable because a DNA signal can be readily amplified, combined, and processed as information.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 21, 2021
    Inventors: Mario Ancona, Hieu Bui
  • Patent number: 11150186
    Abstract: The stiffness and topology of ultra-small circular DNAs and DNA/peptide hybrids are exploited to create a transducer of enzyme activity with low error rates. The modularity and flexibility of the concept are illustrated by demonstrating various transducers that respond to either specific restriction endonucleases or to specific proteases. In all cases the output is a DNA oligo signal that, as we show, can readily be converted directly to an optical readout, or can serve as input for further processing, for example, using DNA logic or amplification. By exploiting the DNA hairpin (or stem-loop) structure and the phenomenon of strand displacement, an enzyme signal is converted into a DNA signal, in the manner of a transducer. This is valuable because a DNA signal can be readily amplified, combined, and processed as information.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: October 19, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Mario Ancona, Hieu Bui
  • Publication number: 20210310952
    Abstract: The stiffness and topology of ultra-small circular DNAs and DNA/peptide hybrids are exploited to create a transducer of enzyme activity with low error rates. The modularity and flexibility of the concept are illustrated by demonstrating various transducers that respond to either specific restriction endonucleases or to specific proteases. In all cases the output is a DNA oligo signal that, as we show, can readily be converted directly to an optical readout, or can serve as input for further processing, for example, using DNA logic or amplification. By exploiting the DNA hairpin (or stem-loop) structure and the phenomenon of strand displacement, an enzyme signal is converted into a DNA signal, in the manner of a transducer. This is valuable because a DNA signal can be readily amplified, combined, and processed as information.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Inventors: Mario Ancona, Hieu Bui
  • Patent number: 11067508
    Abstract: The stiffness and topology of ultra-small circular DNAs and DNA/peptide hybrids are exploited to create a transducer of enzyme activity with low error rates. The modularity and flexibility of the concept are illustrated by demonstrating various transducers that respond to either specific restriction endonucleases or to specific proteases. In all cases the output is a DNA oligo signal that, as we show, can readily be converted directly to an optical readout, or can serve as input for further processing, for example, using DNA logic or amplification By exploiting the DNA hairpin (or stem-loop) structure and the phenomenon of strand displacement, an enzyme signal is converted into a DNA signal, in the manner of a transducer. This is valuable because a DNA signal can be readily amplified, combined, and processed as information.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: July 20, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Mario Ancona, Hieu Bui
  • Publication number: 20200326283
    Abstract: The stiffness and topology of ultra-small circular DNAs and DNA/peptide hybrids are exploited to create a transducer of enzyme activity with low error rates. The modularity and flexibility of the concept are illustrated by demonstrating various transducers that respond to either specific restriction endonucleases or to specific proteases. In all cases the output is a DNA oligo signal that, as we show, can readily be converted directly to an optical readout, or can serve as input for further processing, for example, using DNA logic or amplification By exploiting the DNA hairpin (or stem-loop) structure and the phenomenon of strand displacement, an enzyme signal is converted into a DNA signal, in the manner of a transducer. This is valuable because a DNA signal can be readily amplified, combined, and processed as information.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 15, 2020
    Inventors: Mario Ancona, Hieu Bui
  • Patent number: 10266684
    Abstract: Provided herein is a composite, comprising: a polymer host selected from the group consisting of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polypropylene (PP), polyurethane, polycaprolactone (PCL), polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), and polyoxymethylene (POM); and a guest molecule comprising hyaluronic acid; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. Also provided herein are methods for forming the composite, and blood-contracting devices made from the composite, such as heart valves and vascular grafts.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: April 23, 2019
    Assignee: Colorado State University Research Foundation
    Inventors: Susan P. James, Hieu Bui
  • Publication number: 20180305528
    Abstract: Provided herein is a composite, comprising: a polymer host selected from the group consisting of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polypropylene (PP), polyurethane, polycaprolactone (PCL), polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), and polyoxymethylene (POM); and a guest molecule comprising hyaluronic acid; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. Also provided herein are methods for forming the composite, and blood-contracting devices made from the composite, such as heart valves and vascular grafts.
    Type: Application
    Filed: July 2, 2018
    Publication date: October 25, 2018
    Applicant: Colorado State University Research Foundation
    Inventors: Susan P. James, Hieu Bui