Patents by Inventor Hion-suck Baik

Hion-suck Baik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8552494
    Abstract: Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Bum Kim, Young-Pil Kim, Jung-Yun Won, Hion-Suck Baik, Jun-Ho Lee
  • Patent number: 7981750
    Abstract: In one aspect, a method of fabricating a semiconductor device is provided. The method includes forming at least one capping layer over epitaxial source/drain regions of a PMOS device, forming a stress memorization (SM) layer over the PMOS device including the at least one capping layer and over an adjacent NMOS device, and treating the SM layer formed over the NMOS and PMOS devices to induce tensile stress in a channel region of the NMOS device.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: July 19, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hion-suck Baik, Jong-bong Park, Jung-yun Won, Hwa-sung Rhee, Byung-seo Kim, Ho Lee, Myung-sun Kim, Ji-hye Yi
  • Patent number: 7919820
    Abstract: Example embodiments provide a complementary metal-oxide semiconductor (CMOS) semiconductor device and a method of fabricating the CMOS semiconductor device. The CMOS semiconductor device may include gates in the nMOS and pMOS areas, polycrystalline silicon (poly-Si) capping layers, metal nitride layers underneath the poly-Si capping layers, and a gate insulating layer underneath the gate. The metal nitride layers of the nMOS and pMOS areas may be formed of the same type of material and may have different work functions. Since a metal gate is formed of identical types of metal nitride layers, a process may be simplified, yield may be increased, and a higher-performance CMOS semiconductor device may be obtained.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: April 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-su Chung, Hyung-suk Jung, Sung Heo, Hion-suck Baik
  • Publication number: 20110073941
    Abstract: Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.
    Type: Application
    Filed: December 7, 2010
    Publication date: March 31, 2011
    Inventors: Jin Bum Kim, Young-Pil Kim, Jung-Yun Won, Hion-Suck Baik, Jun-Ho Lee
  • Patent number: 7875525
    Abstract: A stack-type capacitor includes a lower electrode, a dielectric layer formed on the lower electrode, and an upper electrode formed on the dielectric layer, wherein the lower electrode includes a first metal layer having a cylindrical shape and a second metal layer filled in the first metal layer. In the capacitor, an amount of oxygen included in the lower electrode is decreased to suppress oxidation of a TiN layer. Thus, a stable stack-type capacitor may be formed, which increases greatly the performance of highly integrated DRAMs.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-hyun Lee, Hion-suck Baik, Soon-ho Kim, Jae-young Choi
  • Patent number: 7871906
    Abstract: In various embodiments, the present disclosure may provide a storage node. In various implementations, the storage node may include a bottom electrode having a non-planar bottom surface that conforms with and is connected to a non-planar top surface of a diode electrode of a memory device. The storage node may further include a phase change layer on top of a bottom diode and a top electrode on a top surface of a phase change layer.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-ho Lee, Sung-kwan Kang, Hion-suck Baik, Jong-wook Lee
  • Patent number: 7867865
    Abstract: Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: January 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Bum Kim, Young-Pil Kim, Jung-Yun Won, Hion-Suck Baik, Jun-Ho Lee
  • Patent number: 7838422
    Abstract: Provided is an aluminum (Al) doped charge trap layer, a non-volatile memory device and methods of fabricating the same. The charge trap layer may include a plurality of silicon nano dots that trap charges and a silicon oxide layer that covers the silicon nano dots, wherein the charge trap layer is doped with aluminum (Al). The non-volatile memory device may include a substrate including a source and a drain on separate regions of the substrate, a tunneling film on the substrate contacting the source and the drain, the charge trap layer according to example embodiments, a blocking film on the charge trap layer, and a gate electrode on the blocking film.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: November 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-ha Lee, Hion-suck Baik, Kwang-soo Seol, Sang-jin Park, Jong-bong Park, Min-ho Yang
  • Publication number: 20100105193
    Abstract: In various embodiments, the present disclosure may provide a storage node. In various implementations, the storage node may include a bottom electrode having a non-planar bottom surface that conforms with and is connected to a non-planar top surface of a diode electrode of a memory device. The storage node may further include a phase change layer on top of a bottom diode and a top electrode on a top surface of a phase change layer.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 29, 2010
    Inventors: Jun-ho Lee, Sung-kwan Kang, Hion-suck Baik, Jong-wook Lee
  • Publication number: 20090020820
    Abstract: In one aspect, a method of fabricating a semiconductor device is provided. The method includes forming at least one capping layer over epitaxial source/drain regions of a PMOS device, forming a stress memorization (SM) layer over the PMOS device including the at least one capping layer and over an adjacent NMOS device, and treating the SM layer formed over the NMOS and PMOS devices to induce tensile stress in a channel region of the NMOS device.
    Type: Application
    Filed: June 13, 2008
    Publication date: January 22, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hion-suck BAIK, Jong-bong PARK, Jung-yun WON, Hwa-sung RHEE, Byung-seo KIM, Ho LEE, Myung-sun KIM, Ji-hye YI
  • Publication number: 20090008717
    Abstract: Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Inventors: Jin-Bum Kim, Young-Pil Kim, Jung-Yun Won, Hion-Suck Baik, Jun-Ho Lee
  • Publication number: 20080210922
    Abstract: In various embodiments, the present disclosure may provide a storage node. In various implementations, the storage node may include a bottom electrode having a non-planar bottom surface that conforms with and is connected to a non-planar top surface of a diode electrode of a memory device. The storage node may further include a phase change layer on top of a bottom diode and a top electrode on a top surface of a phase change layer.
    Type: Application
    Filed: December 18, 2007
    Publication date: September 4, 2008
    Inventors: Jun-ho Lee, Sung-kwan Kang, Hion-suck Baik, Jong-wook Lee
  • Publication number: 20080203488
    Abstract: Example embodiments provide a complementary metal-oxide semiconductor (CMOS) semiconductor device and a method of fabricating the CMOS semiconductor device. The CMOS semiconductor device may include gates in the nMOS and pMOS areas, polycrystalline silicon (poly-Si) capping layers, metal nitride layers underneath the poly-Si capping layers, and a gate insulating layer underneath the gate. The metal nitride layers of the nMOS and pMOS areas may be formed of the same type of material and may have different work functions. Since a metal gate is formed of identical types of metal nitride layers, a process may be simplified, yield may be increased, and a higher-performance CMOS semiconductor device may be obtained.
    Type: Application
    Filed: January 10, 2008
    Publication date: August 28, 2008
    Inventors: Young-su Chung, Hyung-suk Jung, Sung Heo, Hion-suck Baik
  • Publication number: 20080150010
    Abstract: Provided is an aluminum (Al) doped charge trap layer, a non-volatile memory device and methods of fabricating the same. The charge trap layer may include a plurality of silicon nano dots that trap charges and a silicon oxide layer that covers the silicon nano dots, wherein the charge trap layer is doped with aluminum (Al). The non-volatile memory device may include a substrate including a source and a drain on separate regions of the substrate, a tunneling film on the substrate contacting the source and the drain, the charge trap layer according to example embodiments, a blocking film on the charge trap layer, and a gate electrode on the blocking film.
    Type: Application
    Filed: August 28, 2007
    Publication date: June 26, 2008
    Inventors: Eun-ha Lee, Hion-suck Baik, Kwang-soo Seol, Sang-jin Park, Jong-bong Park, Min-ho Yang
  • Patent number: 7365010
    Abstract: Methods of fabricating semiconductor devices having a carbon-containing metal silicide layer and semiconductor devices fabricated by the methods are provided. A representative method includes the steps of preparing a semiconductor substrate and forming a gate electrode and source/drain regions on the semiconductor substrate, such that the gate electrode has a first metal silicide layer on an upper part thereof which contains carbon and the source/drain regions have second metal silicide layers on their substantially carbon-free upper parts.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: April 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwa-sung Rhee, Hion-suck Baik, Dong-suk Shin, Tetsuji Ueno, Seung-hwan Lee, Ho Lee
  • Publication number: 20070152283
    Abstract: A semiconductor device and a manufacturing method thereof for preventing gate electrode degradation and gate current leakage. The semiconductor device includes a gate insulating layer including an H-k (high dielectric) material on a semiconductor substrate, a barrier metal layer including a metal alloy on the gate insulating layer, and a gate electrode layer formed on the barrier metal layer. Illustratively, the barrier metal layer includes at least one of TaAlN (tantalum aluminum nitride) or TiAlN (titanium aluminum nitride). The barrier metal layer can include an oxidation-resistant material so that oxidation of the barrier metal layer is prevented during a subsequent annealing of the semiconductor device in an oxygen atmosphere. Thus, degradation of a gate electrode is prevented, and gate current leakage due to degradation of the gate electrode is prevented.
    Type: Application
    Filed: October 23, 2006
    Publication date: July 5, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hion-suck BAIK, Eun-ha LEE, Hyung-suk JUNG, Sung-kee HAN, Min-ho YANG
  • Publication number: 20070072399
    Abstract: Semiconductor devices are provided having a selective epitaxial growth layer that exhibits suppressed lateral growth. These semiconductor devices may include a semiconductor substrate having a silicon region, and an epitaxial growth layer formed on the silicon region. The epitaxial growth layer may comprise alternatively stacked silicon and silicon germanium epitaxial layers. The silicon germanium epitaxial layer may be thinner than the silicon epitaxial layers.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 29, 2007
    Inventors: Young-Pil Kim, Jin-Bum Kim, Jun-Ho Lee, Hyung-ik Lee, Hion-Suck Baik
  • Publication number: 20070023810
    Abstract: A semiconductor device with a stack type capacitor having a lower electrode formed of an aluminum-doped metal, and a manufacturing method thereof are provided. The semiconductor device includes: a semiconductor substrate having a gate structure and an active region; an interlayer dielectric film formed on the active region; a lower electrode formed of a metal containing aluminum on the interlayer dielectric film; a dielectric layer formed on the lower electrode; an upper electrode formed on the dielectric layer; and a plug formed in the interlayer dielectric film to electrically connect the active region with the lower electrode.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 1, 2007
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hion-suck Baik, Jung-hyun Lee, Jong-bong Park, Yun-chang Park
  • Patent number: 7132710
    Abstract: A semiconductor device with a stack type capacitor having a lower electrode formed of an aluminum-doped metal, and a manufacturing method thereof are provided. The semiconductor device includes: a semiconductor substrate having a gate structure and an active region; an interlayer dielectric film formed on the active region; a lower electrode formed of a metal containing aluminum on the interlayer dielectric film; a dielectric layer formed on the lower electrode; an upper electrode formed on the dielectric layer; and a plug formed in the interlayer dielectric film to electrically connect the active region with the lower electrode.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: November 7, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hion-suck Baik, Jung-hyun Lee, Jong-bong Park, Yun-chang Park
  • Publication number: 20060244033
    Abstract: A semiconductor device with a stack type capacitor having a lower electrode formed of an aluminum-doped metal, and a manufacturing method thereof are provided. The semiconductor device includes: a semiconductor substrate having a gate structure and an active region; an interlayer dielectric film formed on the active region; a lower electrode formed of a metal containing aluminum on the interlayer dielectric film; a dielectric layer formed on the lower electrode; an upper electrode formed on the dielectric layer; and a plug formed in the interlayer dielectric film to electrically connect the active region with the lower electrode.
    Type: Application
    Filed: June 27, 2006
    Publication date: November 2, 2006
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hion-suck Baik, Jung-hyun Lee, Jong-bong Park, Yun-chang Park