Patents by Inventor Hiroaki FUJIBAYASHI

Hiroaki FUJIBAYASHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141550
    Abstract: A silicon carbide wafer manufacturing apparatus includes a mounting unit disposed in a reaction chamber. The mounting unit includes a susceptor portion having a mounting surface on which a rear surface of a seed substrate is to be mounted, and a guide portion disposed on the susceptor portion in a state of surrounding the seed substrate. The mounting unit is configured such that a first interval between the seed substrate and the guide portion on an upstream side in a step-flow growth direction is narrower than a second interval between the seed substrate and the guide portion on a downstream side in the step-flow growth direction when an epitaxial layer is grown. The guide portion is configured such that a temperature of the guide portion is lower than a temperature of the seed substrate when the epitaxial layer is grown.
    Type: Application
    Filed: September 28, 2023
    Publication date: May 2, 2024
    Inventors: HIROAKI FUJIBAYASHI, MASATAKE NAGAYA, JUNJI OHARA, SHINICHI HOSHI
  • Patent number: 11879171
    Abstract: A semiconductor manufacturing device includes: a thin film formation portion that includes a chamber; and a supply gas unit that introduces a supply gas into the chamber. The supply gas unit includes: multiple supply pipes; a raw material flow rate controller that is installed on each of the multiple supply pipes, and controls a flow rate; a collective pipe that is connected to the multiple supply pipes, and generates a mixed gas; multiple distribution pipes connected to a downstream side of the collective pipe; a pressure controller that is installed on one distribution pipe, and adjusts a mixed gas pressure; and a distribution flow rate controller that is installed on a distribution pipe different from the distribution pipe provided with the pressure controller, and controls a flow rate of the mixed gas.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: January 23, 2024
    Assignee: DENSO CORPORATION
    Inventors: Hiroaki Fujibayashi, Yuichi Takeuchi
  • Publication number: 20240018687
    Abstract: A semiconductor wafer manufacturing apparatus includes a susceptor. The susceptor has a plate shape having a first surface and a second surface opposite to the first surface, and is disposed on a cylindrical member of a rotating device in such a manner that the first surface faces a reaction chamber and the second surface faces a hollow chamber surrounded by the cylindrical member and the susceptor. The susceptor has a recessed portion for accommodating a base wafer on the first surface, and the recessed portion has such a size that a gap is provided between a side surface of the recessed portion and the base wafer. The recessed portion has a bottom part and has at least one through hole penetrating through the bottom part.
    Type: Application
    Filed: July 11, 2023
    Publication date: January 18, 2024
    Inventors: Hiroaki FUJIBAYASHI, Hirotaka MORI, Takayuki SATOMURA, Shigeyuki TAKAGI
  • Publication number: 20240021464
    Abstract: A semiconductor wafer manufacturing apparatus includes a reaction chamber, a reactant gas supply pipe and a reactant gas discharge pipe communicated with the reaction chamber, a rotating device having a cylindrical member, a lid member disposed on one end portion of the cylindrical member, a heating device disposed in a hollow chamber that is a space surrounded by the cylindrical member and the lid member, an inert gas supply pipe and an inert gas discharge pipe communicated with the hollow chamber, and a controller. The controller is configured to adjust an amount of an inert gas discharged from the inert has discharge pipe such that a pressure in the hollow chamber is higher than a pressure in the reaction chamber and equal to or lower than a pressure of a minimum closing portion of the lid member.
    Type: Application
    Filed: July 11, 2023
    Publication date: January 18, 2024
    Inventors: Hiroaki FUJIBAYASHI, Hirotaka MORI, Takayuki SATOMURA, Shigeyuki TAKAGI
  • Publication number: 20230203709
    Abstract: A silicon carbide wafer includes a base wafer that is made of silicon carbide and doped with an n-type impurity, and an epitaxial layer that is arranged on a main surface of the base wafer, made of silicon carbide and doped with an n-type impurity. The base wafer has a thickness t1 and an average impurity concentration n1, and the epitaxial layer has a thickness t2 and an average impurity concentration n2. The base wafer and the epitaxial layer are configured so as to satisfy a mathematical formula 1: ?0.0178<0.012+(t2/t1)×0.057-(n2/n1)×0.029-{(t2/t1)-0.273}×{(n2/n1)-0.685}×0.108<0.0178.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 29, 2023
    Inventors: HIROAKI FUJIBAYASHI, MASATAKE NAGAYA, JUNJI OHARA, SHINICHI HOSHI, TAKASHI KANEMURA
  • Publication number: 20220259739
    Abstract: An apparatus manufactures a semiconductor device. The apparatus includes a film formation device, a first detector and a second detector. The film formation device forms an embedded layer for embedding a trench disposed at a substrate in the semiconductor device. The first detector detects a state of a first region of the substrate where the trench is disposed. The second detector detects a state of a second region of the substrate, the second region disposed outside of the first region. The film formation device ends film formation of the embedded layer, based on a condition that difference between a first detection result corresponding to the state of the first region and a second detection result corresponding to the state of the second region is smaller than or equal to a threshold value.
    Type: Application
    Filed: February 10, 2022
    Publication date: August 18, 2022
    Inventors: Hiroaki FUJIBAYASHI, Yuya KOIDE, Hirotaka MORI
  • Publication number: 20210324517
    Abstract: A semiconductor manufacturing device includes: a thin film formation portion that includes a chamber; and a supply gas unit that introduces a supply gas into the chamber. The supply gas unit includes: multiple supply pipes; a raw material flow rate controller that is installed on each of the multiple supply pipes, and controls a flow rate; a collective pipe that is connected to the multiple supply pipes, and generates a mixed gas; multiple distribution pipes connected to a downstream side of the collective pipe; a pressure controller that is installed on one distribution pipe, and adjusts a mixed gas pressure; and a distribution flow rate controller that is installed on a distribution pipe different from the distribution pipe provided with the pressure controller, and controls a flow rate of the mixed gas.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Hiroaki FUJIBAYASHI, Yuichi TAKEUCHI
  • Patent number: 11107892
    Abstract: A method for producing a SiC epitaxial wafer according to the present embodiment includes: an epitaxial growth step of growing the epitaxial layer on the SiC single crystal substrate by feeding an Si-based raw material gas, a C-based raw material gas, and a gas including a Cl element to a surface of a SiC single crystal substrate, in which the epitaxial growth step is performed under growth conditions that a film deposition pressure is 30 torr or less, a Cl/Si ratio is in a range of 8 to 12, a C/Si ratio is in a range of 0.8 to 1.2, and a growth rate is 50 ?m/h or more from an initial growth stage.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: August 31, 2021
    Assignees: SHOWA DENKO K.K., Central Research Institute Of Electric Power Industry, DENSO CORPORATION
    Inventors: Keisuke Fukada, Naoto Ishibashi, Akira Bando, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Kazukuni Hara, Masami Naito, Hideyuki Uehigashi, Hiroaki Fujibayashi, Hirofumi Aoki, Toshikazu Sugiura, Katsumi Suzuki
  • Patent number: 10896831
    Abstract: A supply part includes a first partition, a second partition under the first partition, a third partition under the second partition, a first flow path between the first partition and the second partition allowing a first gas to be introduced therein, a second flow path between the second partition and the third partition allowing a second gas to be introduced therein, a first piping extending from the second partition to reach below the third partition and being communicated with the first flow path, a second piping extending from the third partition to reach below the third partition and being communicated with the second flow path, and a convex portion provided on an outer circumferential surface of the first piping or an inner circumferential surface of the second piping protruding from one of the outer circumferential surface and the inner circumferential surface toward the other one.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 19, 2021
    Assignees: NuFlare Technology, Inc., Showa Denko K.K., Central Research Institute of Electric Power Industry
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hiroaki Fujibayashi, Hideyuki Uehigashi, Masami Naito, Kazukuni Hara, Hirofumi Aoki, Takahiro Kozawa
  • Patent number: 10745824
    Abstract: A film forming apparatus according to an embodiment includes: a film forming chamber configured to house therein a substrate to perform film forming processing; a gas supplier located in an upper part of the film forming chamber and configured to supply a process gas onto the substrate; and a heater configured to heat the substrate, wherein the film forming chamber has a temperature-increase suppression region being a lower part of the gas supplier and suppressing a temperature increase of the gas supplied to an upper part of the heater.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: August 18, 2020
    Assignee: NuFlare Technology, Inc.
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Masayoshi Yajima, Kazukuni Hara, Hiroaki Fujibayashi, Hideki Matsuura, Katsumi Suzuki
  • Publication number: 20200083330
    Abstract: A method for producing a SiC epitaxial wafer according to the present embodiment includes: an epitaxial growth step of growing the epitaxial layer on the SiC single crystal substrate by feeding an Si-based raw material gas, a C-based raw material gas, and a gas including a Cl element to a surface of a SiC single crystal substrate, in which the epitaxial growth step is performed under growth conditions that a film deposition pressure is 30 torr or less, a Cl/Si ratio is in a range of 8 to 12, a C/Si ratio is in a range of 0.8 to 1.2, and a growth rate is 50 ?m/h or more from an initial growth stage.
    Type: Application
    Filed: April 19, 2018
    Publication date: March 12, 2020
    Applicants: SHOWA DENKO K.K., Central Research Institute of Electric Power Industry, DENSO CORPORATION
    Inventors: Keisuke FUKADA, Naoto ISHIBASHI, Akira BANDO, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Kazukuni HARA, Masami NAITO, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Hirofumi AOKI, Toshikazu SUGIURA, Katsumi SUZUKI
  • Patent number: 10584417
    Abstract: A film forming apparatus according to an embodiment of the invention includes: a film forming chamber configured to form a film on a substrate; a susceptor configured to place the substrate thereon; a rotating part configured to rotate the susceptor; a heater configured to heat the substrate; and a gas supplier configured to supply process gases into the film forming chamber, wherein the susceptor includes: a ring-shaped outer circumferential susceptor supported by the rotating part; a holder provided at an inner circumferential portion of the outer circumferential susceptor, the holder configured to hold the substrate; a ring-shaped plate provided over the outer circumferential susceptor; and a cover member configured to cover a top surface and an outer circumferential surface of the plate and an outer circumferential surface of the outer circumferential susceptor.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: March 10, 2020
    Assignee: NuFlare Technology, Inc.
    Inventors: Hideki Ito, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Katsumi Suzuki, Koichi Nishikawa
  • Publication number: 20190376206
    Abstract: This SiC epitaxial wafer includes: a SiC single crystal substrate of which a main surface has an off-angle of 0.4° to 5° with respect to (0001) plane; and an epitaxial layer provided on the SiC single crystal substrate, wherein the epitaxial layer has a basal plane dislocation density of 0.1 pieces/cm2 or less that is a density of basal plane dislocations extending from the SiC single crystal substrate to an outer surface and an intrinsic 3C triangular defect density of 0.1 pieces/cm2 or less.
    Type: Application
    Filed: December 25, 2017
    Publication date: December 12, 2019
    Applicants: SHOWA DENKO K.K, Central Research Institute of Electric Power Industry, DENSO CORPORATION
    Inventors: Keisuke FUKADA, Naoto ISHIBASHI, Akira BANDO, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Kazukuni HARA, Masami NAITO, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Hirofumi AOKI, Toshikazu SUGIURA, Katsumi SUZUKI
  • Patent number: 10262863
    Abstract: A method for manufacturing a SiC epitaxial wafer according to one aspect of the present invention includes separately introducing, into a reaction space for SiC epitaxial growth, a basic N-based gas composed of molecules containing an N atom within the molecular structure but having neither a double bond nor a triple bond between nitrogen atoms, and a Cl-based gas composed of molecules containing a Cl atom within the molecular structure, and mixing the N-based gas and the Cl-based gas at a temperature equal to or higher than the boiling point or sublimation temperature of a solid product generated by mixing the N-based gas and the Cl-based gas.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: April 16, 2019
    Assignees: SHOWA DENKO K.K., Central Research Institute Of Electric Power Industry
    Inventors: Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hideyuki Uehigashi, Hiroaki Fujibayashi, Masami Naito, Kazukuni Hara, Takahiro Kozawa, Hirofumi Aoki
  • Publication number: 20180374721
    Abstract: A supply part includes a first partition, a second partition under the first partition, a third partition under the second partition, a first flow path between the first partition and the second partition allowing a first gas to be introduced therein, a second flow path between the second partition and the third partition allowing a second gas to be introduced therein, a first piping extending from the second partition to reach below the third partition and being communicated with the first flow path, a second piping extending from the third partition to reach below the third partition and being communicated with the second flow path, and a convex portion provided on an outer circumferential surface of the first piping or an inner circumferential surface of the second piping protruding from one of the outer circumferential surface and the inner circumferential surface toward the other one.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hiroaki Fujibayashi, Hideyuki Uehigashi, Masami Naito, Kazukuni Hara, Hirofumi Aoki, Takahiro Kozawa
  • Publication number: 20180135203
    Abstract: A film forming apparatus according to an embodiment includes: a film forming chamber configured to house therein a substrate to perform film forming processing; a gas supplier located in an upper part of the film forming chamber and configured to supply a process gas onto the substrate; and a heater configured to heat the substrate, wherein the film forming chamber has a temperature-increase suppression region being a lower part of the gas supplier and suppressing a temperature increase of the gas supplied to an upper part of the heater.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 17, 2018
    Inventors: Kunihiko SUZUKI, Naohisa IKEYA, Masayoshi YAJIMA, Kazukuni HARA, Hiroaki FUJIBAYASHI, Hideki MATSUURA, Katsumi SUZUKI
  • Publication number: 20180135175
    Abstract: A film forming apparatus according to an embodiment includes: a film forming chamber capable of housing a substrate therein; a gas supplier located in an upper part of the film forming chamber and having a plurality of nozzles supplying gases onto a film forming face of the substrate; a heater configured to heat the substrate; and a first protection cover having a plurality of opening parts at positions corresponding to the nozzles of the gas supplier, respectively.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 17, 2018
    Inventors: Kunihiko SUZUKI, Naohisa IKEYA, Masayoshi YAJIMA, Kazukuni HARA, Hiroaki FUJIBAYASHI, Hideki MATSUURA, Katsumi SUZUKI
  • Patent number: 9879359
    Abstract: In a silicon carbide semiconductor film forming apparatus, first to third gasses are introduced into first to third separation chambers through first to third inlets, respectively. The first and second gasses are silicon raw material including gas and carbon raw material including gas, and the third gas does not include silicon and carbon. The first and second gasses are independently supplied to growth space through first and second supply paths extending from the first and second separation chambers, respectively. The third gas is introduced through a third supply path from the third separation chamber between the first and second gasses.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: January 30, 2018
    Assignees: DENSO CORPORATION, CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY, NuFlare Technology, Inc., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroaki Fujibayashi, Masami Naito, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hideki Ito, Ayumu Adachi, Koichi Nishikawa
  • Patent number: 9873941
    Abstract: It is an object of the present invention to provide a film-forming apparatus and a film-forming method that can prolong the lifetime of heaters used under high temperature conditions in an epitaxial growth technique. An inert gas discharge portion supplies an inert gas into the space containing the heater, gas is then discharged through the gas discharge portion without influence on the semiconductor substrate during film formation. It is therefore possible to prevent the reaction gas entering into the space containing the high-temperature heaters. This makes it possible to prevent a reaction between hydrogen gas contained in the reaction gas and SiC constituting the heaters. Therefore, it is possible to prevent carbon used as a base material of the heaters from being exposed due to the decomposition of SiC and then reacting with hydrogen gas. This makes it possible to prolong the lifetime of the heaters.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: January 23, 2018
    Assignees: NuFlare Technology, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Ito, Toshiro Tsumori, Kunihiko Suzuki, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Publication number: 20170345658
    Abstract: A method for manufacturing a SiC epitaxial wafer according to one aspect of the present invention includes separately introducing, into a reaction space for SiC epitaxial growth, a basic N-based gas composed of molecules containing an N atom within the molecular structure but having neither a double bond nor a triple bond between nitrogen atoms, and a Cl-based gas composed of molecules containing a Cl atom within the molecular structure, and mixing the N-based gas and the Cl-based gas at a temperature equal to or higher than the boiling point or sublimation temperature of a solid product generated by mixing the N-based gas and the Cl-based gas.
    Type: Application
    Filed: December 8, 2015
    Publication date: November 30, 2017
    Applicants: SHOWA DENKO K.K., Central Research Institute of Electric Power Industry
    Inventors: Keisuke FUKADA, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Masami NAITO, Kazukuni HARA, Takahiro KOZAWA, Hirofumi AOKI