Patents by Inventor Hiroaki FUJIBAYASHI

Hiroaki FUJIBAYASHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9570337
    Abstract: At the time of transporting a substrate into or from a space where a film formation process is performed, the space where the film formation process is performed, a space where a lower heater 16 is provided, and a space where an upper heater 19 is provided are made in an inert gas atmosphere.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: February 14, 2017
    Assignees: NuFlare Technology, Inc., Denso Corporation
    Inventors: Hideki Ito, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Patent number: 9518322
    Abstract: A film formation apparatus according to an embodiment includes: a film formation chamber performing film formation on a substrate; a cylindrical liner provided inside of a sidewall of the film formation chamber; a process-gas supply unit provided at a top of the film formation chamber and having a first gas ejection hole supplying a process gas to inside of the liner; a first heater provided outside the liner in the film formation chamber and heating the substrate from above; a second heater heating the substrate from below; and a shielding gas supply unit having a plurality of second gas ejection holes supplying a shielding gas to a position closer to a sidewall of the film formation chamber than a position of the first gas ejection hole.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: December 13, 2016
    Assignee: NuFlare Technology, Inc.
    Inventors: Hideki Ito, Kunihiko Suzuki, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Hiroaki Fujibayashi, Masami Naito, Ayumu Adachi, Koichi Nishikawa
  • Publication number: 20160138190
    Abstract: In a silicon carbide semiconductor film forming apparatus, first to third gasses are introduced into first to third separation chambers through first to third inlets, respectively. The first and second gasses are silicon raw material including gas and carbon raw material including gas, and the third gas does not include silicon and carbon. The first and second gasses are independently supplied to growth space through first and second supply paths extending from the first and second separation chambers, respectively. The third gas is introduced through a third supply path from the third separation chamber between the first and second gasses.
    Type: Application
    Filed: June 19, 2014
    Publication date: May 19, 2016
    Inventors: Hiroaki FUJIBAYASHI, Masami NAITO, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Hideki ITO, Ayumu ADACHI, Koichi NISHIKAWA
  • Patent number: 9273412
    Abstract: A film-forming apparatus and method comprising a film-forming chamber for supplying a reaction gas into, a cylindrical shaped liner provided between an inner wall of the film-forming chamber and a space for performing a film-forming process, a main-heater for heating a substrate placed inside the liner, from the bottom side, a sub-heater cluster provided between the liner and the inner wall, for heating the substrate from the top side, wherein the main-heater and the sub-heater cluster are resistive heaters, wherein the sub-heater cluster has a first sub-heater provided at the closest position to the substrate, and a second sub-heater provided above the first sub-heater, wherein the first sub-heater heats the substrate in combination with the main-heater, the second sub-heater heats the liner at a lower output than the first sub-heater, wherein each temperature of the main-heater, the first sub-heater, and the second sub-heater is individually controlled.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: March 1, 2016
    Assignees: NuFlare Technology, Inc., Central Research Institute of Electric Power Industry, Denso Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Kunihiko Suzuki, Hideki Ito, Naohisa Ikeya, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Publication number: 20160024652
    Abstract: A film forming apparatus according to an embodiment of the invention includes: a film forming chamber configured to form a film on a substrate; a susceptor configured to place the substrate thereon; a rotating part configured to rotate the susceptor; a heater configured to heat the substrate; and a gas supplier configured to supply process gases into the film forming chamber, wherein the susceptor includes: a ring-shaped outer circumferential susceptor supported by the rotating part; a holder provided at an inner circumferential portion of the outer circumferential susceptor, the holder configured to hold the substrate; a ring-shaped plate provided over the outer circumferential susceptor; and a cover member configured to cover a top surface and an outer circumferential surface of the plate and an outer circumferential surface of the outer circumferential susceptor.
    Type: Application
    Filed: July 10, 2015
    Publication date: January 28, 2016
    Inventors: Hideki Ito, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Katsumi Suzuki, Koichi Nishikawa
  • Publication number: 20150329967
    Abstract: It is an object of the present invention to provide a film-forming apparatus and a film-forming method that can prolong the lifetime of heaters used under high temperature conditions in an epitaxial growth technique. An inert gas discharge portion supplies an inert gas into the space containing the heater, gas is then discharged through the gas discharge portion without influence on the semiconductor substrate during film formation. It is therefore possible to prevent the reaction gas entering into the space containing the high-temperature heaters. This makes it possible to prevent a reaction between hydrogen gas contained in the reaction gas and SiC constituting the heaters. Therefore, it is possible to prevent carbon used as a base material of the heaters from being exposed due to the decomposition of SiC and then reacting with hydrogen gas. This makes it possible to prolong the lifetime of the heaters.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Inventors: Hideki ITO, Toshiro TSUMORI, Kunihiko SUZUKI, Hidekazu TSUCHIDA, Isaho KAMATA, Masahiko ITO, Masami NAITO, Hiroaki FUJIBAYASHI, Ayumu ADACHI, Koichi NISHIKAWA
  • Publication number: 20150299898
    Abstract: A susceptor processing method according to an embodiment includes: placing a plate on a susceptor arranged in a film forming chamber; heating the susceptor in order to have a temperature higher than that of the plate by using a main heater arranged below the susceptor and an auxiliary heater arranged in an upper part of the film forming chamber, and subliming a SIC film having been formed on a surface of the susceptor and adhering the sublimed SIC on the plate; and transporting the plate from the film forming chamber, the plate having SIC adhered thereon.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 22, 2015
    Inventors: Hideki ITO, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Hiroaki Fujibayashi, Katsumi Suzuki, Koichi Nishikawa
  • Publication number: 20150090693
    Abstract: A film formation apparatus according to an embodiment includes: a film formation chamber performing film formation on a substrate; a cylindrical liner provided inside of a sidewall of the film formation chamber; a process-gas supply unit provided at a top of the film formation chamber and having a first gas ejection hole supplying a process gas to inside of the liner; a first heater provided outside the liner in the film formation chamber and heating the substrate from above; a second heater heating the substrate from below; and a shielding gas supply unit having a plurality of second gas ejection holes supplying a shielding gas to a position closer to a sidewall of the film formation chamber than a position of the first gas ejection hole.
    Type: Application
    Filed: August 29, 2014
    Publication date: April 2, 2015
    Inventors: Hideki ITO, Kunihiko SUZUKI, Hidekazu TSUCHIDA, Isaho KAMATA, Masahiko ITO, Hiroaki FUJIBAYASHI, Masami NAITO, Ayumu ADACHI, Koichi NISHIKAWA
  • Publication number: 20140287539
    Abstract: At the time of transporting a substrate into or from a space where a film formation process is performed, the space where the film formation process is performed, a space where a lower heater 16 is provided, and a space where an upper heater 19 is provided are made in an inert gas atmosphere.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 25, 2014
    Inventors: Hideki ITO, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Patent number: 8704340
    Abstract: A compound semiconductor substrate includes a first substrate and a second substrate made of single crystal gallium nitride. In each of the first substrate and the second substrate, one surface is a (0001) Ga-face and an opposite surface is a (000-1) N-face. The first substrate and the second substrate are bonded to each other in a state where the (000-1) N-face of the first substrate and the (000-1) N-face of the second substrate face each other, and the (0001) Ga-face of the first substrate and the (0001) Ga-face of the second substrate are exposed.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: April 22, 2014
    Assignee: DENSO CORPORATION
    Inventors: Hiroaki Fujibayashi, Masami Naito, Nobuyuki Ooya
  • Publication number: 20130306977
    Abstract: A compound semiconductor substrate includes a first substrate and a second substrate made of single crystal silicon carbide. In each of the first substrate and the second substrate, one surface is a (000-1) C-face and an opposite surface is a (0001) Si-face. The first substrate and the second substrate are bonded to each other in a state where the (0001) Si-face of the first substrate and the (0001) Si-face of the second substrate face each other, and the (000-1) C-face of the first substrate and the (000-1) C-face of the second substrate are exposed.
    Type: Application
    Filed: March 25, 2013
    Publication date: November 21, 2013
    Applicant: DENSO CORPORATION
    Inventors: Hiroaki FUJIBAYASHI, Masami NAITO, Nobuyuki OOYA
  • Patent number: 8507921
    Abstract: A compound semiconductor substrate includes a first substrate and a second substrate made of single crystal silicon carbide. In each of the first substrate and the second substrate, one surface is a (000-1) C-face and an opposite surface is a (0001) Si-face. The first substrate and the second substrate are bonded to each other in a state where the (0001) Si-face of the first substrate and the (0001) Si-face of the second substrate face each other, and the (000-1) C-face of the first substrate and the (000-1) C-face of the second substrate are exposed.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: August 13, 2013
    Assignee: DENSO CORPORATION
    Inventors: Hiroaki Fujibayashi, Masami Naito, Nobuyuki Ooya
  • Publication number: 20120325138
    Abstract: A film-forming apparatus and method comprising a film-forming chamber for supplying a reaction gas into, a cylindrical shaped liner provided between an inner wall of the film-forming chamber and a space for performing a film-forming process, a main-heater for heating a substrate placed inside the liner, from the bottom side, a sub-heater cluster provided between the liner and the inner wall, for heating the substrate from the top side, wherein the main-heater and the sub-heater cluster are resistive heaters, wherein the sub-heater cluster has a first sub-heater provided at the closest position to the substrate, and a second sub-heater provided above the first sub-heater, wherein the first sub-heater heats the substrate in combination with the main-heater, the second sub-heater heats the liner at a lower output than the first sub-heater, wherein each temperature of the main-heater, the first sub-heater, and the second sub-heater is individually controlled.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 27, 2012
    Applicants: NuFlare Techology, Inc., Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Central Res. Institute of Electric Power Industry
    Inventors: Kunihiko SUZUKI, Hideki Ito, Naohisa Ikeya, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Publication number: 20120181550
    Abstract: A compound semiconductor substrate includes a first substrate and a second substrate made of single crystal silicon carbide. In each of the first substrate and the second substrate, one surface is a (000-1) C-face and an opposite surface is a (0001) Si-face. The first substrate and the second substrate are bonded to each other in a state where the (0001) Si-face of the first substrate and the (0001) Si-face of the second substrate face each other, and the (000-1) C-face of the first substrate and the (000-1) C-face of the second substrate are exposed.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 19, 2012
    Applicant: DENSO CORPORATION
    Inventors: Hiroaki FUJIBAYASHI, Masami Naito, Nobuyuki Ooya