Patents by Inventor Hiroaki Otsuka

Hiroaki Otsuka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10358698
    Abstract: A titanium alloy material for exhaust system parts excellent in oxidation resistance and cold workability able to be used for an exhaust manifold, exhaust pipe, catalyst device, muffler, or other part characterized by containing, by mass %, Cu: 0.5 to 1.5%, Sn: 0.5 to 1.5%, Si: 0.1% to 0.6%, O: 0.1% or less, and Fe: 0.15% or less, and a balance of Ti and impurities, having a total of the contents of Cu and Sn of 1.4 to 2.7%, and having a total of the volume rates of the ?-phases and Ti—Cu and Ti—Si intermetallic compounds of 1.0% or less.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 23, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroaki Otsuka, Hideki Fujii
  • Publication number: 20180195154
    Abstract: A titanium alloy material for exhaust system parts excellent in oxidation resistance and cold workability able to be used for an exhaust manifold, exhaust pipe, catalyst device, muffler, or other part characterized by containing, by mass %, Cu: 0.5 to 1.5%, Sn: 0.5 to 1.5%, Si: 0.1% to 0.6%, O: 0.1% or less, and Fe: 0.15% or less, and a balance of Ti and impurities, having a total of the contents of Cu and Sn of 1.4 to 2.7%, and having a total of the volume rates of the ?-phases and Ti—Cu and Ti—Si intermetallic compounds of 1.0% or less.
    Type: Application
    Filed: December 22, 2017
    Publication date: July 12, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroaki OTSUKA, Hideki FUJII
  • Patent number: 9797029
    Abstract: The present invention provides a heat resistant titanium alloy sheet excellent in cold workability having high temperature strength characteristics better than JIS Class 2 pure titanium and having a cold workability and high temperature oxidation resistance equal to or better than that of JIS Class 2 pure titanium and a method of production of the same, that is, a heat resistant titanium alloy sheet excellent in cold workability characterized by comprising, by mass %, 0.3 to 1.8% of Cu, 0.18% or less of oxygen, 0.30% or less of Fe, and, as needed, at least one of Sn, Zr, Mo, Nb, and Cr in a total of 0.3 to 1.5%, and the balance of Ti and less than 0.3% of impurity elements and by a ?-phase and Ti2Cu-phase being included in a volume percentage of 0 to 2% and, further, a method of production of that titanium alloy sheet characterized by performing the final annealing at 630 to 850° C. in temperature range or performing the hot-rolled sheet or coil annealing or intermediate annealing at 630 to 850° C.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: October 24, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hideki Fujii, Hiroaki Otsuka, Kazuhiro Takahashi
  • Patent number: 9719154
    Abstract: The present invention provides a titanium slab for hot rolling which can be fed into a general purpose hot-rolling mill for producing strip coil, without passage through a breakdown process such as blooming or a straightening process, and can further suppress surface defect occurrence of the hot-rolled strip coil, and a method of producing and a method of rolling the same, characterized in that in the cast titanium slab an angle ? formed by the crystal growth direction (solidification direction) from the surface layer toward the interior and a direction parallel to the slab casting direction (longitudinal direction) is 45 to 90°, and moreover, there is a surface layer structure of 10 mm or greater whose ? is 70 to 90°, and further characterized in that a crystal grain layer of 10 mm or greater is formed whose C-axis direction inclination of a titanium ? phase is, as viewed from the side of the slab to be hot rolled, in the range of 35 to 90° from the normal direction of the surface to be hot rolled.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: August 1, 2017
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, TOHO TITANIUM CO., LTD.
    Inventors: Kazuhiro Takahashi, Tomonori Kunieda, Kenichi Mori, Hiroaki Otsuka, Hideki Fujii, Yoshihiro Fujii, Yoshimasa Miyazaki, Takashi Oda, Hisamune Tanaka, Osamu Tada
  • Publication number: 20150192056
    Abstract: The present invention provides a titanium sheet covered with a protective film superior in high temperature oxidation resistance and high temperature salt damage resistance and a method of production of the same and an automobile exhaust system using the same. The titanium sheet covered with a protective film is formed on its surface with a protective film of a thickness of 1 to 100 ?m where flake-shaped metal Al with an average thickness of 0.1 to 5 ?m and average width or average length of 1 to 50 ?m or grain-shaped metal Al with an average size of 0.1 to 30 ?m is dispersed in 20 to 60 mass % silicone resin or silicone grease and comprised of Si: 15 to 55 mass % and C: 10 to 45 mass % and having a balance of unavoidable impurities. Preferably the titanium sheet of the substrate contains one or both of 0.5 to 2.1 mass % of Cu and 0.4 to 2.5 mass % of Al.
    Type: Application
    Filed: March 17, 2015
    Publication date: July 9, 2015
    Applicant: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroaki Otsuka, Hideki Fujii, Kiyonori Kiyonori, Yoshiaki Itami, Takashi Domoto
  • Patent number: 9011976
    Abstract: The present invention provides a titanium sheet covered with a protective film superior in high temperature oxidation resistance and high temperature salt damage resistance and a method of production of the same and an automobile exhaust system using the same. The titanium sheet covered with a protective film is formed on its surface with a protective film of a thickness of 1 to 100 ?m where flake-shaped metal Al with an average thickness of 0.1 to 5 ?m and average width or average length of 1 to 50 ?m or grain-shaped metal Al with an average size of 0.1 to 30 ?m is dispersed in 20 to 60 mass % silicone resin or silicone grease and comprised of Si: 15 to 55 mass % and C: 10 to 45 mass % and having a balance of unavoidable impurities. Preferably the titanium sheet of the substrate contains one or both of 0.5 to 2.1 mass % of Cu and 0.4 to 2.5 mass % of Al.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: April 21, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroaki Otsuka, Hideki Fujii, Kiyonori Tokuno, Yoshiaki Itami, Takashi Domoto
  • Publication number: 20140348697
    Abstract: The present invention provides a heat resistant titanium alloy sheet excellent in cold workability having high temperature strength characteristics better than JIS Class 2 pure titanium and having a cold workability and high temperature oxidation resistance equal to or better than that of JIS Class 2 pure titanium and a method of production of the same, that is, a heat resistant titanium alloy sheet excellent in cold workability characterized by comprising, by mass %, 0.3 to 1.8% of Cu, 0.18% or less of oxygen, 0.30% or less of Fe, and, as needed, at least one of Sn, Zr, Mo, Nb, and Cr in a total of 0.3 to 1.5%, and the balance of Ti and less than 0.3% of impurity elements and by a ?-phase and Ti2Cu-phase being included in a volume percentage of 0 to 2% and, further, a method of production of that titanium alloy sheet characterized by performing the final annealing at 630 to 850° C. in temperature range or performing the hot-rolled sheet or coil annealing or intermediate annealing at 630 to 850° C.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Hideki Fujii, Hiroaki Otsuka, Kazuhiro Takahashi
  • Patent number: 8709178
    Abstract: The present invention provides a titanium material for hot rolling which enables reduction of defects on the surface (in the case of a flat material or strip coil, including not only the flat surfaces but also the side surfaces and edges) due to hot rolling. The titanium material for hot rolling has dimples imparted by cold plastic deformation whose mean value of the heights (Wc) of the undulation profile elements is 0.2 to 1.5 mm and mean value of the lengths (WSm) thereof is 3 to 15 mm. The invention also provides a method of producing the titanium material and a method of hot rolling the titanium material.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: April 29, 2014
    Assignees: Nippon Steel & Sumitomo Metal Corporation, Toho Titanium Co., Ltd.
    Inventors: Kazuhiro Takahashi, Tomonori Kunieda, Kenichi Mori, Hiroaki Otsuka, Hideki Fujii, Yoshimasa Miyazaki, Takashi Oda, Hisamune Tanaka, Osamu Tada, Norio Yamamoto
  • Patent number: 8562763
    Abstract: A high strength ?+?-type titanium alloy, containing, by mass %, 4.4% to less than 5.5% of Al, 1.4% to less than 2.1% of Fe, and 1.5 to less than 5.5% of Mo and including, as impurities, Si suppressed to less than 0.1% and C suppressed to less than 0.01% and a balance of Ti and unavoidable impurities.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: October 22, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroaki Otsuka, Hideki Fujii, Mitsuo Ishii
  • Publication number: 20130128435
    Abstract: An end-face sealing agent for display devices, which consists of a resin composition containing (1) a liquid epoxy resin, (2) an epoxy resin curing agent that is liquid at 23° C. and that is selected from the group consisting of acid anhydrides and thiol compounds having two or more mercapto groups in the molecule, (3) a secondary or tertiary amine that is solid at 233° C., or microcapsules that contain a secondary or tertiary amine therein, and (4) a filler, and in which the content of the component (4) is 50 to 150 parts by weight relative to 100 parts by weight of the sum total of the components (1), (2) and (3), and the viscosity as determined using an E-type viscometer at 253° C. and 2.5 rpm is 0.5 to 50 Pas.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 23, 2013
    Inventors: Yasushi Mizuta, Hiroaki Otsuka, Toshikazu Gomi
  • Publication number: 20120267001
    Abstract: A titanium alloy material for exhaust system parts which is excellent in oxidation resistance able to be used for an exhaust manifold, exhaust pipe, catalyst device, muffler, or other part characterized by containing, by mass %, Cu: 0.5 to 1.5%, Sn: 0.5 to 1.5%, Si: 0.1% to 0.6%, and O: 0.1% or less, a total of the contents of Cu and Sn being 1.4 to 2.7%, and having a balance of Ti and unavoidable impurities. A titanium alloy material for exhaust system parts which is excellent in oxidation resistance and cold workability.
    Type: Application
    Filed: December 16, 2010
    Publication date: October 25, 2012
    Inventors: Hiroaki Otsuka, Hideki Fujii
  • Publication number: 20120148437
    Abstract: The present invention provides a heat resistant titanium alloy sheet excellent in cold workability having high temperature strength characteristics better than JIS Type 2 pure titanium and having a cold workability and high temperature oxidation resistance equal to or better than that of JIS Class 2 pure titanium comprising, by mass %, 0.3 to 1.8% of Cu, 0.18% or less of oxygen, 0.30% or less of Fe, and, as needed, at least one of Sn, Zr, Mo, Nb, and Cr in a total of 0.3 to 1.5%, and the balance of Ti and less than 0.3% of impurity elements and a method of production characterized by performing the final annealing at 650 to 830° C. or performing the hot-rolled sheet or coil annealing or intermediate annealing at 650 to 830° C. and the final annealing after cold working at 600 to 650° C.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 14, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hideki FUJII, Hiroaki Otsuka, Kazuhiro Takahashi
  • Publication number: 20110318597
    Abstract: The present invention provides a titanium material for hot rolling that enables reduction of defects occurring on the surface (in the case of a flat material or strip coil, including not only the flat surfaces but also the side surfaces and edges) owing to the hot rolling, and a method of producing the same, particularly to a titanium material for hot rolling enabling omission of an ingot breakdown process, and a method of producing the same, characterized in that it is a titanium material for hot rolling having dimples imparted by cold plastic deformation whose mean value of the heights (Wc) of the undulation profile elements is 0.2 to 1.5 mm and mean value of the lengths (WSm) thereof is 3 to 15 mm, and makes it possible to minimize surface defects occurring in hot rolling even if a process for breaking down the ingot is omitted.
    Type: Application
    Filed: February 8, 2010
    Publication date: December 29, 2011
    Inventors: Kazuhiro Takahashi, Tomonori Kunieda, Kenichi Mori, Hiroaki Otsuka, Hideki Fujii, Yoshimasa Miyazaki, Takashi Oda, Hisamune Tanaka, Osamu Tada, Norio Yamamoto
  • Publication number: 20110311835
    Abstract: The present invention provides a titanium slab for hot rolling which can be fed into a general purpose hot-rolling mill for producing strip coil, without passage through a breakdown process such as blooming or a straightening process, and can further suppress surface defect occurrence of the hot-rolled strip coil, and a method of producing and a method of rolling the same, characterized in that in the cast titanium slab an angle ? formed by the crystal growth direction (solidification direction) from the surface layer toward the interior and a direction parallel to the slab casting direction (longitudinal direction) is 45 to 90°, and moreover, there is a surface layer structure of 10 mm or greater whose ? is 70 to 90°, and further characterized in that a crystal grain layer of 10 mm or greater is formed whose C-axis direction inclination of a titanium a phase is, as viewed from the side of the slab to be hot rolled, in the range of 35 to 90° from the normal direction of the surface to be hot rolled.
    Type: Application
    Filed: February 8, 2010
    Publication date: December 22, 2011
    Inventors: Kazuhiro Takahashi, Tomonori Kunieda, Kenichi Mori, Hiroaki Otsuka, Hideki Fujii, Yoshihiro Fujii, Yoshimasa Miyazaki, Takashi Oda, Hisamune Tanaka, Osamu Tada
  • Publication number: 20110132500
    Abstract: The present invention provides a heat resistant titanium alloy sheet excellent in cold workability having high temperature strength characteristics better than JIS Type 2 pure titanium and having a cold workability and high temperature oxidation resistance equal to or better than that of JIS Class 2 pure titanium and a method of production of the same, that is, a heat resistant titanium alloy sheet excellent in cold workability characterized by comprising, by mass %, 0.3 to 1.8% of Cu, 0.18% or less of oxygen, 0.30% or less of Fe, and, as needed, at least one of Sn, Zr, Mo, Nb, and Cr in a total of 0.3 to 1.5%, and the balance of Ti and less than 0.3% of impurity elements and, further, a method of production of that titanium alloy sheet characterized by performing the final annealing at 650 to 830° C. in temperature range or performing the hot-rolled sheet or coil annealing or intermediate annealing at 650 to 830° C. in temperature range and perform the final annealing after cold working at 600 to 650° C.
    Type: Application
    Filed: February 4, 2011
    Publication date: June 9, 2011
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hideki Fujii, Hiroaki Otsuka, Kazuhiro Takahashi
  • Patent number: 7612013
    Abstract: An object of the present invention is to provide a catalyst which, in the FT process, exhibits a high chain growth probability, and a high catalytic activity, can stably and smoothly promote the reaction, exhibits a high productivity of C5+, and can efficiently produce liquid hydrocarbons, and a process therefore. The invention relates to a hydrocarbon-producing catalyst obtainable by supporting a ruthenium compound on a support composed of a manganese oxide and an aluminum oxide, and which satisfies at least one of characteristics (1) and (2): (1) the catalyst being treated with an aqueous alkaline solution and subsequently subjected to calcination treatment in the air at 150 to 500° C., (2) the aluminum oxide being an aluminum oxide wherein pore volume formed by pores having a pore diameter of 8 nm or more accounts for 50% or more of total pore volume.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: November 3, 2009
    Assignees: Japan Oil, Gas and Metals National Corporation, Cosmo Oil Co., Ltd.
    Inventors: Kazuhito Sato, Shigenori Nakashizu, Osamu Iwamoto, Hiroaki Otsuka
  • Publication number: 20090142586
    Abstract: The present invention provides a titanium sheet covered with a protective film superior in high temperature oxidation resistance and high temperature salt damage resistance and a method of production of the same and an automobile exhaust system using the same. The titanium sheet covered with a protective film is formed on its surface with a protective film of a thickness of 1 to 100 ?m where flake-shaped metal Al with an average thickness of 0.1 to 5 ?m and average width or average length of 1 to 50 ?m or grain-shaped metal Al with an average size of 0.1 to 30 ?m is dispersed in 20 to 60 mass % silicone resin or silicone grease and comprised of Si: 15 to 55 mass % and C: 10 to 45 mass % and having a balance of unavoidable impurities. Preferably the titanium sheet of the substrate contains one or both of 0.5 to 2.1 mass % of Cu and 0.4 to 2.5 mass % of Al.
    Type: Application
    Filed: October 5, 2006
    Publication date: June 4, 2009
    Inventors: Hiroaki Otsuka, Hideki Fujii, Kiyonori Tokuno, Yoshiaki Itami, Takashi Domoto
  • Publication number: 20080064769
    Abstract: An object of the present invention is to provide a catalyst which, in the FT process, exhibits a high chain growth probability, and a high catalytic activity, can stably and smoothly promote the reaction, exhibits a high productivity of C5+, and can efficiently produce liquid hydrocarbons, and a process therefor. The invention relates to a hydrocarbon-producing catalyst obtainable by supporting a ruthenium compound on a support composed of a manganese oxide and an aluminum oxide, and which satisfies at least one of characteristics (1) and (2): (1) the catalyst being treated with an aqueous alkaline solution and subsequently subjected to calcination treatment in the air at 150 to 500° C., (2) the aluminum oxide being an aluminum oxide wherein pore volume formed by pores having a pore diameter of 8 nm or more accounts for 50% or more of total pore volume.
    Type: Application
    Filed: February 23, 2005
    Publication date: March 13, 2008
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, COSMO OIL CO., LTD.
    Inventors: Kazuhito Sato, Shigenori Nakashizu, Osamu Iwamoto, Hiroaki Otsuka
  • Publication number: 20070212251
    Abstract: A high strength ?+?-type titanium alloy, containing, by mass %, 4.4% to less than 5.5% of Al, 1.4% to less than 2.1% of Fe, and 1.5 to less than 5.5% of Mo and including, as impurities, Si suppressed to less than 0.1% and C suppressed to less than 0.01% and a balance of Ti and unavoidable impurities.
    Type: Application
    Filed: April 5, 2005
    Publication date: September 13, 2007
    Inventors: Hiroaki Otsuka, Hideki Fujii, Mitsuo Ishii
  • Publication number: 20070187008
    Abstract: The present invention provides a heat resistant titanium alloy sheet excellent in cold workability having high temperature strength characteristics better than JIS Type 2 pure titanium and having a cold workability and high temperature oxidation resistance equal to or better than that of JIS Class 2 pure titanium and a method of production of the same, that is, a heat resistant titanium alloy sheet excellent in cold workability characterized by comprising, by mass %, 0.3 to 1.8% of Cu, 0.18% or less of oxygen, 0.30% or less of Fe, and, as needed, at least one of Sn, Zr, Mo, Nb, and Cr in a total of 0.3 to 1.5%, and the balance of Ti and less than 0.3% of impurity elements and, further, a method of production of that titanium alloy sheet characterized by performing the final annealing at 650 to 830° C. in temperature range or performing the hot-rolled sheet or coil annealing or intermediate annealing at 650 to 830° C. in temperature range and perform the final annealing after cold working at 600 to 650° C.
    Type: Application
    Filed: March 16, 2005
    Publication date: August 16, 2007
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hideki Fujii, Hiroaki Otsuka, Kazuhiro Takahashi