Patents by Inventor Hirokazu Aoyama

Hirokazu Aoyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5763705
    Abstract: There are provided production methods of 1,1,1,3,3-pentafluoropropane characterized in that 1,1,1,3,3-pentafluoro-2,3-dichloropropane is reacted with hydrogen fluoride in the presence of a noble metal catalyst; of 1,1,1,3,3-pentafluoro-2-halogeno-3-chloropropane characterized in that the halogenated propene indicated as general formula I is fluorinated in the presence of antimony trihalogenide and/or antimony pentahalogenide by hydrogen fluoride of mole ratio of or over five times the said antimony halogenide in a liquid phase; and of 1,1,1,2,3,3-hexachloropropene characterized in that 1,1,1,2,2,3,3-heptachloropropane is reacted with an aqueous solution of alkali metal hydroxide in the presence of a phase transfer catalyst. Therefore, an industrial manufacturing method which is possible to obtain the objective product easily at low cost and high yield can be provided.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: June 9, 1998
    Assignee: Daikin Industries Ltd.
    Inventors: Seiji Takubo, Hirokazu Aoyama, Tatsuo Nakada
  • Patent number: 5728902
    Abstract: A method for manufacturing 1,1,1,3,3-pentafluoropropene comprises the steps of adding 2-trifluoromethyl-3,3,3-trifluoropropionic acid under the presence of metal carbonate and/or metal hydrogencarbonate in an aprotic solvent at reaction temperature particularly from 40.degree. C. to 80.degree. C., of refining resulting reaction products to obtain 1,1,1,3,3-pentafluoropropene, and further of coexisting a desiccating agent therein.According to the method, 1,1,1,3,3-pentafluoropropene can be manufactured through industrially efficient and cost-effective way using 2-trifluoromethyl-3,3,3-trifluoropropionic acid as a raw material.
    Type: Grant
    Filed: August 14, 1996
    Date of Patent: March 17, 1998
    Assignee: Daikin Industries Ltd.
    Inventors: Hirokazu Aoyama, Akinori Yamamoto, Noriaki Shibata
  • Patent number: 5714655
    Abstract: 2,2,3-trichloro-1,1,1,3,3-pentafluoropropane is used as a raw material, to which not less than 4.5 equivalent parts of hydrogen are added to effect a hydrogenation reaction in the presence of a noble metal catalyst, particularly a palladium catalyst, by the vapor phase method to manufacture 1,1,1,3,3-pentafluoropropane. Further, propane, propene, and hexachloropropene, etc. are chlorofluorinated in the presence of a metal catalyst to produce 2,2,3-trichloro-1,1,1,3,3-pentafluoropropane, then this compound is reduced with hydrogen in the presence of a noble metal catalyst to produce 1,1,1,3,3-pentafluoropropane. 2,2,3-trichloro-1,1,1,3,3-pentafluoropropane and 1,1,1,3,3-pentafluoropropane can thus be efficiently and economically produced.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: February 3, 1998
    Assignee: Daikin Industries, Ltd.
    Inventors: Akinori Yamamoto, Eiji Seki, Hirokazu Aoyama, Seiji Takubo, Tatsuo Nakada
  • Patent number: 5714654
    Abstract: A method is proposed for producing 1,1,1,3,3-pentafluoropropane, in which 1,1,3,3,3-pentafluoropropene is reduced at a temperature between 40.degree. C. and 300.degree. C. by reacting it with hydrogen in a gas phase in the presence of a palladium catalyst. Further, a method is proposed for producing 1,1,1,3,3-pentafluoropropane and/or 1,1,3,3,3-pentafluoropropene, in which the raw material 2-chloro-1,1,3,3,3-pentafluoropropene is hydrogenated especially at a temperature between 30.degree. C. and 450.degree. C. in the presence of a catalyst composed of at least one metal selected from palladium, platinum and rhodium. Further, a method is proposed of producing 1,1,3,3,3-pentafluoropropene, in which 1,1,1,3,3-pentafluoro-2,3-dichloropropane is dechlorinated by using hydrogen in the presence of a metal oxide catalyst. Based on these production methods, 1,1,1,3,3-pentafluoropropane and/or 1,1,3,3,3-pentafluoropropene can thus be produced with high yield rates.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: February 3, 1998
    Assignee: Daikin Industries Ltd.
    Inventors: Akinori Yamamoto, Eiji Seki, Hirokazu Aoyama, Tatsuo Nakada
  • Patent number: 5696306
    Abstract: A decomposition inhibitor for hydrochlorofluorocarbons and hydrofluorocarbons (HCFCs/HFCs) which comprises at least one member of the class consisting of organic acid-amine mixtures, fluorine-free halogenated hydrocarbons, carboxylic acid esters, nitrile compounds, carbonyl compounds and halogenated nitro compounds. A method of inhibiting the decomposition of HCFCs/HFCs which comprises using the decomposition inhibitor mentioned above.In the field of polyurethane foam manufacture using HCFCs/HFCs as blowing agents, the effect of inhibiting the decomposition of HCFCs/HFCs can be produced over a long period of time covering the storage of raw materials, the foam manufacturing process and the use of foamed products.
    Type: Grant
    Filed: June 22, 1995
    Date of Patent: December 9, 1997
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoshi Ide, Tatsumi Tsuchiya, Naoki Maekawa, Tsuyoshi Inaba, Hirokazu Aoyama
  • Patent number: 5689019
    Abstract: A manufacturing method for 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) wherein 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) is obtained by reacting hexafluoropropene (HFP) with anhydrous hydrogen fluoride (HF) under the presence of antimony catalyst.A manufacturing method can be provided in which HFC-227ea can be obtained at high yield under the mild condition without producing by-products such as olefin compounds and so on.
    Type: Grant
    Filed: January 14, 1997
    Date of Patent: November 18, 1997
    Assignee: Daikin Industries Ltd.
    Inventors: Hirokazu Aoyama, Noriaki Shibata
  • Patent number: 5679875
    Abstract: The present inventions provide manufacturing methods of 1,1,1,2,3-pentafluoropropene characterized by the reaction of removing HF by means of the contact of 1,1,1,2,3,3-hexafluoropropane in the gas state with active carbon or active carbon added with metallic salt. 1,1,1,2,3-pentafluoropropene can be produced from easily available 1,1,1,2,3,3-hexafluoropropane by cost-effective industrial methods at high yields according to these inventions.The inventions also provide manufacturing methods of 1,1,1,2,3-pentafluoropropane characterized by reducing 1,1,1,2,3-pentafluoropropene with hydrogen under the presence of a hydrogenation catalyst consisting of palladium added with one or more of silver, copper, gold, tellurium, zinc, chromium, molybdenum, and thallium or under the presence of a rhodium catalyst. The desired product can be produced at high reactivities and high selectivities according to these inventions.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: October 21, 1997
    Assignee: Daikin Industries, Ltd.
    Inventors: Hirokazu Aoyama, Eiji Seki
  • Patent number: 5667594
    Abstract: A cleaning solvent composition that is made by either blending aliphatic fluorohydrocarbon as expressed by the general formulaC.sub.n F.sub.m H.sub.2n+2-m(wherein, n and m are a positive integral numbers, being 4.ltoreq.n.ltoreq.6, 2n-3.ltoreq.m<2n+2 respectively) or blending a mixture of this aliphatic fluorohydrocarbon and alcohol having a carbon number of 1 to 4 with lactam and/or carboxylic acid amide, tertiary amines, or alcohol having ether linkage and/or amino linkage within its molecules. A cleaning process wherein an object is dipped into the said composition to remove dirty component, then rinsed with a mixture of the said aliphatic fluorohydrocarbon and the said alcohol having a carbon number of 1 to 4, and thereafter the object is steam cleaned with the said mixture when necessity arises.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: September 16, 1997
    Assignee: Daikin Industries Ltd.
    Inventors: Yukio Omure, Hirokazu Aoyama, Satoshi Ide, Takahiro Matsuda
  • Patent number: 5659093
    Abstract: There are provided production methods of 1,1,1,3,3-pentafluoropropane characterized in that 1,1,1,3,3-pentafluoro-2,3-dichloropropane is reacted with hydrogen fluoride in the presence of a noble metal catalyst; of 1,1,1,3,3-pentafluoro-2-halogeno-3-chloropropane characterized in that the halogenated propene indicated as general formula I is fluorinated in the presence of antimony trihalogenide and/or antimony pentahalogenide by hydrogen fluoride of mole ratio of or over five times the said antimony halogenide in a liquid phase; and of 1,1,1,2,3,3-hexaohloropropene characterized in that 1,1,1,2,2,3,3-heptachloropropane is reacted with an aqueous solution of alkali metal hydroxide in the presence of a phase transfer catalyst. Therefore, an industrial manufacturing method which is possible to obtain the objective product easily at low cost and high yield can be provided.
    Type: Grant
    Filed: June 27, 1995
    Date of Patent: August 19, 1997
    Assignee: Daikin Industries Ltd.
    Inventors: Seiji Takubo, Hirokazu Aoyama, Tatsuo Nakada
  • Patent number: 5629461
    Abstract: There is provided a method of producing 1,1,2,2,3-pentafluoropropane by reacting 1-chloro-2,2,3,3-tetrafluoropropane with hydrogen fluoride in the presence of fluorinated catalyst. By this method, 1,1,2,2,3-pentafluoropropane can be obtained industrially and economically at high yield.
    Type: Grant
    Filed: June 27, 1995
    Date of Patent: May 13, 1997
    Assignee: Daikin Industries, Ltd.
    Inventors: Takashi Yasuhara, Akinori Yamamoto, Hirokazu Aoyama, Eiji Seki
  • Patent number: 5608128
    Abstract: The present invention provides a production method of obtaining the mixture of 1,1,1,4,4,4-hexafluoro-2,3-dichloro-2-butene, 1,1,1,4,4,4-hexafluoro-2-chloro-2-butene and 1,1,1,4,4,4-hexafluoro-2-butene (1,1,1,4,4,4-hexafluoro-2-butene compounds) by reacting at least one of butane, butene and butadiene with chlorine and HF in the presence of a suitable catalyst, and also a production method of obtaining 1,1,1,4,4,4-hexafluorobutane by reducing said products in the presence of a noble metal catalyst.
    Type: Grant
    Filed: July 27, 1995
    Date of Patent: March 4, 1997
    Assignee: Daikin Industries, Ltd.
    Inventors: Tatsuo Nakada, Hirokazu Aoyama, Seiji Takubo
  • Patent number: 5599783
    Abstract: A cleaning solvent composition comprising at least one selected from the group consisting of 1H,2H/-hexafluorocyclobutane, 1,2,2,3,3-pentafluoro-cyclobutane, 1,2,2,3,3,4,4,5,5-nonafluorocyclopentane, 1H/2H-octafluorocyclopentane, 1H,2H/-octafluorocyclopentane, 1H/3H-octafluorocyclopentane, 1H,4H,2H/-heptafluorocyclopentane, 1H,2H/4H-heptafluorocyclopentane, 1H,2H,4H/-heptafluorocyclopentane, 1H,3H/2H-heptafluorocyclopentane, 1H,2H/3H-heptafluorocyclopentane and 1H,2H/3H-heptafluorocyclopentane and a method for cleaning or drying acticles employing thereof and use of the composition as a cleaning agent.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: February 4, 1997
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoshi Ide, Takahiro Matsuda, Hirokazu Aoyama, Akinori Yamamoto
  • Patent number: 5557019
    Abstract: A new 3,3-dichloro-1,1,1,2,2,4,4,5,5,5-decafluoropentane as a precursor of alternatives of refrigerants, etc.A method to obtain the target products at high yield and high selectivity by reacting tetrafluoroethylene and difluorodichloromethane under the Lewis acid catalyst to produce the new compound and an economical method in a continuous reaction state.A production method of 1,1,1,2,2,4,4,5,5,5-decafluoropentane at high yield by reducing 3,3-dichloro-1,1,1,2,2,4,4,5,5,5-decafluoropentane.
    Type: Grant
    Filed: August 24, 1994
    Date of Patent: September 17, 1996
    Assignee: Daikin Industries Ltd.
    Inventors: Hirokazu Aoyama, Satoru Kohno, Satoshi Koyama
  • Patent number: 5532418
    Abstract: A method of producing 1,1,1,2,3,3-hexafluoropropane in a characteristic process in which tetrafluorochloropropene is first obtained from the dechlorofluorination (removing ClF) of 1,1,1,2,2-pentafluoro-3,3-dichloropropane and/or 1,1,2,2,3-pentafluoro-1,3-dichloropropane by hydrogen in the presence of a metal oxide catalyst and then the product olefin is fluorinated in the presence of a catalyst. By this method, 1,1,1,2,3,3-hexafluoropropane, which is useful as an action fluid and so on and has a property to help preserving the environment, and an intermediate in its synthesis can be easily produced at low cost.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: July 2, 1996
    Assignee: Daikin Industries Ltd.
    Inventors: Tatsuo Nakada, Hirokazu Aoyama
  • Patent number: 5527960
    Abstract: Fluorinating reagents expressed in a general formula; ##STR1## (In the general formula, R is an alkyl group having 1 to 5 carbons or a dialkylamino group in which each alkyl group has 1 to 3 carbons.), and a fluorinating method to fluorinate an alcoholic hydroxyl group by using the reagent. Raw materials of the aforesaid fluorinating reagents can be easily converted to object products and are less poisonous and corrosive. Their procurement and preparation are also easy. Further, it is easy to fluorinate compounds containing an alcoholic hydroxyl group by using this fluorinating reagents.
    Type: Grant
    Filed: January 24, 1995
    Date of Patent: June 18, 1996
    Assignee: Daikin Industries Ltd.
    Inventor: Hirokazu Aoyama
  • Patent number: 5516951
    Abstract: 1,1,1,4,4,4-Hexafluoro-2-butene is prepared by reacting 1,1,1-trifluoro-2,2-dichloroethane with copper and an amine, and then 1,1,1,4,4,4-hexafluorobutane is prepared by reacting 1,1,1,4,4,4-hexafluoro-2-butene with hydrogen.1,1,1,4,4,4-Hexafluorobutane, which is used as a coolant, a blowing agent or a cleaner and can reserves the environment, is easily obtained, and 1,1,1,4,4,4-hexafluoro-2-butene, which is useful as an intermediate for the 1,1,1,4,4,4-hexafluorobutane, or as a monomer of fluorine-containing polymers is easily prepared in a good yield.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: May 14, 1996
    Assignee: Daikin Industries Ltd.
    Inventor: Hirokazu Aoyama
  • Patent number: 5424002
    Abstract: A solvent composition comprising a mixture of at least one polyfluoroalkane and at least one lower alcohol, wherein the polyfluoroalkane is selected among those represented by the general formula (1): (CF.sub.3).sub.2 CF--R wherein R represents a fluorinated ethyl group substituted by 1 to 4 fluorine atoms, and the lower alcohol is selected from the group consisting of methyl, ethyl, n-propyl and isopropyl alcohol.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: June 13, 1995
    Assignee: Daikin Industries, Ltd.
    Inventors: Yukio Omure, Hirokazu Aoyama, Satoshi Ide, Takahiro Matsuda
  • Patent number: 5364991
    Abstract: 1,1,1,4,4,4-Hexafluorobutane is prepared by reducing 2-chloro-1,1,1,4,4,4-hexafluorobutene-2 with hydrogen in the presence of a hydrogenation catalyst containing an alloy which contains at least one first metal component selected from the group consisting of platinum and palladium and at least one second metal component selected from the group consisting of silver, copper, gold, tellurium, zinc, chromium, molybdenum and thallium. 1,1,1,4,4,4-Hexafluorobutane can be prepared in a high selectivity and a high yield.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: November 15, 1994
    Assignee: Daikin Industries, Ltd.
    Inventors: Eiji Seki, Hirokazu Aoyama, Tatsuo Nakada, Satoshi Koyama
  • Patent number: 5326913
    Abstract: A fluorinated compound of the formula:R--CCl.sub.2 CF.sub.2 CF.sub.3 (I)in which R is a perfluoroalkyl group, a perchloroalkyl group, a polyfluoroalkyl group, a polychloroalkyl group or a polychloropolyfluoroalkyl group, each having at least one carbon atom is prepared at a high selectivity and a high yield by reacting tetrafluoroethylene with a compound of the formula:R--CFCl.sub.2 (II)in which R is the same as defined above in the presence of a Lewis acid.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: July 5, 1994
    Assignee: Daikin Industries Ltd.
    Inventors: Hirokazu Aoyama, Satoshi Koyama
  • Patent number: 5185483
    Abstract: 1,1,1,2,2-Pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane are prepared in pure forms by reacting dichlorofluoromethane and tetrafluoroethylene, or chloroform, difluorochloromethane and tetrafluoroethylene in the presence of a catalyst comprising a halogenated zirconium of the formula:ZrCl.sub.x F.sub.y (I)wherein x and y are numbers which satisfy the relationships x+y=4, 0<x.ltoreq.4 and 0.ltoreq.y<4.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: February 9, 1993
    Assignee: Daikin Industries, Ltd.
    Inventors: Hirokazu Aoyama, Takashi Yasuhara, Satoru Kono, Satoshi Koyama, Souichi Ueda