Patents by Inventor Hiroki Nagai

Hiroki Nagai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140147745
    Abstract: To provide a binder for a storage battery device, whereby good adhesion is obtainable, and it is possible to realize good charge and discharge characteristics in a secondary battery by well suppressing swelling of an electrode by an electrolytic solution. A binder for a storage battery device, which is made of a fluorinated copolymer comprising repeating units (a) derived from tetrafluoroethylene and repeating units (b) derived from propylene, wherein the molar ratio (a)/(b) is from 60/40 to 75/25, and the total of the repeating units (a) and (b) is at least 90 mol % in all repeating units.
    Type: Application
    Filed: January 29, 2014
    Publication date: May 29, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Mizuna TOYODA, Takehiro KOSE, Hiroki NAGAI
  • Patent number: 8728654
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: May 20, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takenori Tsuchiya, Hiroki Nagai, Masahide Hikosaka
  • Publication number: 20140127582
    Abstract: The present invention provides a lithium secondary battery having a great output power in a low SOC range and a positive electrode active material for use in the battery The battery comprises a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode comprises a positive electrode active material in a form of secondary particles as aggregates of primary particles of a lithium transition metal oxide. The positive electrode active material comprises at least one species of Ni, Co and Mn, and further comprises W and Mg. The W is present, concentrated on surfaces of the primary particles while the Mg is present throughout the primary particles. The Mg content in the positive electrode active material is higher than 50 ppm relative, to the total amount of the active material based on the mass.
    Type: Application
    Filed: May 31, 2011
    Publication date: May 8, 2014
    Inventor: Hiroki Nagai
  • Publication number: 20140082678
    Abstract: According to one embodiment, a video server includes an ingesting device, a storage controller, storage devices and a control processor. The control processor controls the ingesting device and the storage controller to store the video signal. When one of the storage devices is replaced, the storage controller restores redundant or divisional data and reconstructs data stored in the original storage devices. When the control processor receives a request for ingesting a video signal and sufficient resources for ingesting do not remain while the control processor causes the storage controller to reconstruct the data, the control processor causes the storage controller to suspend reconstruction, and controls the ingesting device and the storage controller to perform the ingesting.
    Type: Application
    Filed: July 24, 2013
    Publication date: March 20, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroki Nagai, Toshio Suzuki
  • Publication number: 20140060630
    Abstract: In order to increase the generation efficiency of a silicon dioxide solar cell, two conductive substrates are arranged so that the conductive surfaces thereof face each other, at least one of the substrates is disposed upon the substrate facing the light entry-side substrate, and an electrolyte is filled between the silicon dioxide particles compact and the light entry-side substrate. Silicon dioxide solar cells having this configuration exhibit a significantly increased short circuit current and open circuit voltage in comparison to solar cells in which the silicon dioxide and the electrolyte are mixed. This configuration can further be improved by disposing a titanium dioxide solar cell or a dye-sensitized titanium dioxide solar cell upon the light entry-side substrate to further increase the short circuit current and the open circuit voltage.
    Type: Application
    Filed: March 12, 2012
    Publication date: March 6, 2014
    Applicant: INTERNATIONAL FRONTIER TECHNOLOGY LABORATORY, INC.
    Inventors: Nobuaki Komatsu, Tomoko Ito, Hiroki Nagai, Shin-ichiro Nanjo
  • Publication number: 20140055097
    Abstract: There is provided an electronic device system including a plurality of battery packs, and an electronic device that is driven by a power source supplied from the battery packs. At least one battery pack of the plurality of battery packs outputs one or both of discharge information indicating whether the battery pack is dischargeable and charge information indicating whether the battery pack is chargeable, and the electronic device includes a control unit that performs one or both of control of discharge of the battery pack based on the discharge information and control of charge of the battery pack based on the charge information.
    Type: Application
    Filed: July 25, 2013
    Publication date: February 27, 2014
    Applicant: SONY CORPORATION
    Inventors: Hiroki NAGAI, Yosuke KUBO, Kiyotaka AKASAKA
  • Publication number: 20140050976
    Abstract: A lithium-ion secondary battery 100 includes a positive electrode current collector 221 and a porous positive electrode active material layer 223 retained by the positive electrode current collector 221. The positive electrode active material layer 223 contains, for example, positive electrode active material particles 610, an electrically conductive material 620, and a binder 630. In this lithium-ion secondary battery 100, the positive electrode active material particles 610 have a shell portion 612 constituted by a lithium transition metal oxide, a hollow portion 614 formed inside the shell portion 612, and a through hole 616 penetrating the shell portion 612. In the lithium-ion secondary battery 100, in the positive electrode active material layer 223 on average, the hollow portion 614 accounts for 23% or higher of an apparent sectional area of the positive electrode active material particles 610.
    Type: Application
    Filed: May 6, 2011
    Publication date: February 20, 2014
    Inventor: Hiroki Nagai
  • Patent number: 8623544
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: January 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takenori Tsuchiya, Hiroki Nagai, Masahide Hikosaka
  • Patent number: 8623546
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: January 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takenori Tsuchiya, Hiroki Nagai, Masahide Hikosaka
  • Publication number: 20130336846
    Abstract: Provided is an inexpensive material having a photocatalytic action. A photocatalyst is obtained by halogenation-treating glass fibers containing silicon dioxide in its components. Fused quartz, soda-lime glass, non-alkali glass, and borosilicate glass may be used for the glass. Hydrofluoric acid, hydrochloric acid and hydrobromic acid may be used for the halogen acid, and hydrofluoric acid is most desirable. The glass can be particulate, fibrous or sheet form material. The glass exhibits a photocatalytic action even with visible light other than ultraviolet light, and also water repellent effect. The glass according to the invention is capable of decomposing organic substances, and therefore, it is used for window glass in buildings or in transportation such as automobiles, when formed in a plate shape, and for a filter in an air intake/exhaust apparatus, when formed in fibrous shape.
    Type: Application
    Filed: September 15, 2011
    Publication date: December 19, 2013
    Applicant: INTERNATIONAL FRONTIER TECHNOLOGY LABORATORY, INC.
    Inventors: Nobuaki Komatsu, Tomoko Ito, Hiroki Nagai, Shin-ichiro Nanjo
  • Publication number: 20130337305
    Abstract: It is an object of the present invention to provide a nonaqueous electrolyte secondary battery with superior high-temperature charge-discharge cycle characteristics as well as superior low-temperature high-rate charge-discharge cycle characteristics. A nonaqueous electrolyte secondary battery 100 according to the present invention has an electrode body 80 which includes a positive electrode and a negative electrode, and a battery case 50 which houses the electrode body 80 together with a nonaqueous electrolyte, wherein among the nonaqueous electrolyte housed in the battery case 50, an electrolyte amount ratio (A/B) between a surplus electrolyte amount (A) that exists outside the electrode body 80 and an intra-electrode body electrolyte amount (B) impregnating the electrode body 80 ranges from 0.05 to 0.2, and DBP absorption of a positive electrode active material that constitutes the positive electrode is equal to or higher than 30 (ml/100 g).
    Type: Application
    Filed: March 3, 2011
    Publication date: December 19, 2013
    Inventors: Hiroki Nagai, Masahiro Morita, Takashi Iwao, Yukihiro Okada
  • Publication number: 20130330621
    Abstract: To produce a method for producing a fluorinated copolymer latex with a low content of metal components and with favorable stability of the latex even with a low content of an organic solvent. A method for producing a fluorinated copolymer latex, which comprises emulsion-polymerizing a monomer mixture containing tetrafluoroethylene and propylene in the presence of an aqueous medium, an anionic emulsifying agent and a thermally decomposable radical polymerization initiator at a polymerization temperature within a range of from 50° C. to 100° C., wherein the aqueous medium comprises water alone, or water and a water-soluble organic solvent, and the content of the water-soluble organic solvent is less than 1 part by mass per 100 parts by mass of water; and the amount of use of the anionic emulsifying agent is from 1.5 to 5.0 parts by mass per 100 parts by mass of the fluorinated copolymer to be formed.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 12, 2013
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Mizuna NARUMI, Takehiro Kose, Hiroki Nagai
  • Publication number: 20130316210
    Abstract: An assembled battery (10) according to the present invention is constructed by connecting a plurality of chargeable and dischargeable cells (12) in series, this assembled battery (10) including a plurality of cells (12), each cell (12) including a flat-shaped electrode body (80) which has a positive electrode and a negative electrode and a container (14) which houses the electrode body (80) and an electrolyte, wherein the plurality of cells (12) are constrained in a state where the cells (12) are aligned so that flat surfaces of the electrode bodies (80) oppose each other and a load is applied to the cells (12) in an array direction, and a spring constant of the electrode body (80) in the array direction in each of the constrained cells (12) is 10,000 kgf/mm or less.
    Type: Application
    Filed: February 14, 2011
    Publication date: November 28, 2013
    Inventors: Masahiro Morita, Hiroki Nagai, Satomi Kawase
  • Publication number: 20130302687
    Abstract: Active material particles are provided that exhibit performance suitable for increasing the output of a lithium secondary battery and little deterioration due to charge-discharge cycling. The active material particles provided by the present invention have a hollow structure having secondary particles including an aggregate of a plurality of primary particles of a lithium transition metal oxide, and a hollow portion formed inside the secondary particles, and through holes that penetrates to the hollow portion from the outside are formed in the secondary particles. BET specific surface area of the active material particles is 0.5 to 1.9 m2/g.
    Type: Application
    Filed: July 12, 2013
    Publication date: November 14, 2013
    Applicants: SUMITOMO METAL MINING CO., LTD, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroki Nagai, Masahiro Morita, Kensaku Mori, Shin Imaizumi, Kenji Ikeuchi, Toshiyuki Osako, Hiroyuki Toya
  • Publication number: 20130295456
    Abstract: A secondary battery 100 includes a positive electrode current collector 221 and a positive electrode mixture layer 223 coated on the positive electrode current collector 221. The positive electrode mixture layer 223 includes a positive electrode active material 610 and an electrically conductive material 620. A ratio (Vb/Va) of a volume Vb of holes formed inside the positive electrode mixture layer 223 to an apparent volume Va of the positive electrode mixture layer 223 satisfies 0.30?(Vb/Va). In addition, in a micropore distribution of differential micropore volume with respect to a micropore diameter as measured by the mercury intrusion method, the positive electrode mixture layer 223 has a first peak at which a micropore diameter D1 satisfies D1?0.25 ?m and a second peak at which a micropore diameter D2 is greater than the first peak micropore diameter D1.
    Type: Application
    Filed: November 12, 2010
    Publication date: November 7, 2013
    Inventors: Hiroki Nagai, Masahiro Morita, Takashi Iwao
  • Publication number: 20130288121
    Abstract: A secondary battery 100 includes: a positive electrode mixture layer 223 containing a positive electrode active material 610 and an electrically conductive material 620; a positive electrode current collector 221 on which the positive electrode mixture layer 223 is coated; a negative electrode mixture layer 243 containing a negative electrode active material 710; and a negative electrode current collector 241 on which the negative electrode mixture layer 243 is coated, wherein a porosity A1 of the positive electrode mixture layer 223 satisfies 0.30?A1 and, at the same time, a porosity A2 of the negative electrode mixture layer 243 satisfies 0.30?A2.
    Type: Application
    Filed: November 12, 2010
    Publication date: October 31, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroki Nagai, Masahiro Morita, Takashi Iwao
  • Patent number: 8551648
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takenori Tsuchiya, Hiroki Nagai, Masahide Hikosaka
  • Patent number: 8551647
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takenori Tsuchiya, Hiroki Nagai, Masahide Hikosaka
  • Publication number: 20130224586
    Abstract: A porosity X of a positive electrode mixture layer 223 of a secondary battery 100 is 30(%)?X. A mass ratio ? of a positive electrode active material 610 in the positive electrode mixture layer 223 is 0.84???0.925 and a mass ratio ? of a conductive material 620 in the positive electrode mixture layer 223 is 0.06???0.12. In the secondary battery 100, an index Y worked out from an expression below is 30 (mL/100 g)?Y?89 (mL/100 g). The index Y is given by the expression below, Y=A×?+B×?; where A is a DBP absorption number (mL/100 g) in the positive electrode active material 610; ? is the mass ratio of the positive electrode active material 610 in the positive electrode mixture layer 223; B is a DBP absorption number (mL/100 g) of the conductive material 620; and ? is the mass ratio of the conductive material 620 in the positive electrode mixture layer 223.
    Type: Application
    Filed: October 15, 2010
    Publication date: August 29, 2013
    Inventors: Hiroki Nagai, Masahiro Morita, Takashi Iwao
  • Publication number: 20130209879
    Abstract: A secondary battery 100 includes a positive electrode current collector 221 and a positive electrode mixture layer 223 which is coated over the positive electrode current collector 221. The positive electrode mixture layer 223 includes a positive electrode active material 610, an electrically conductive material 620, and a binder 630. In addition, the positive electrode active material 610 has secondary particles 910 formed by an aggregation of a plurality of primary particles of a lithium transition metal oxide, a hollow portion 920 formed in the secondary particle 910, and through holes 930 penetrating the secondary particles 910 so as to connect the hollow portion 920 and the outside. A ratio (Vbc/Va) of an inner volume Vbc of holes formed inside the positive electrode mixture layer 223 to an apparent volume Va of the positive electrode mixture layer 223 satisfies 0.25?(Vbc/Va).
    Type: Application
    Filed: October 15, 2010
    Publication date: August 15, 2013
    Inventors: Hiroki Nagai, Masahiro Morita, Takashi Iwao