Patents by Inventor Hiroki Nagai

Hiroki Nagai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130209888
    Abstract: A secondary battery according to the present invention has a current collector and a positive electrode mixture layer that coats the current collector. The positive electrode mixture layer includes a positive electrode active material, an electrically conductive material, and a binder, and the positive electrode active material is constituted by hollow-structure secondary particles formed by the aggregation of a plurality of primary particles of a lithium transition metal oxide and has a through hole penetrating from outside to a hollow portion. In addition, a particle porosity A1 of the positive electrode active material satisfies 2.0(%)?A1?70(%). Furthermore, a DBP absorption A2 of the positive electrode active material satisfies 23 (mL/100 g)?A2. Moreover, the tap density A3 of the positive electrode active material satisfies 1.0 (g/mL)?A3?1.9 (g/mL).
    Type: Application
    Filed: October 15, 2010
    Publication date: August 15, 2013
    Inventor: Hiroki Nagai
  • Patent number: 8486564
    Abstract: Active material particles are provided that exhibit performance suitable for increasing the output of a lithium secondary battery and little deterioration due to charge-discharge cycling. The active material particles provided by the present invention have a hollow structure having secondary particles including an aggregate of a plurality of primary particles of a lithium transition metal oxide, and a hollow portion formed inside the secondary particles, and through holes that penetrates to the hollow portion from the outside are formed in the secondary particles. BET specific surface area of the active material particles is 0.5 to 1.9 m2/g.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 16, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiroki Nagai, Masahiro Morita, Kensaku Mori, Shin Imaizumi, Kenji Ikeuchi, Toshiyuki Osako, Hiroyuki Toya
  • Publication number: 20130177809
    Abstract: A lithium-ion secondary battery comprising a positive electrode and a negative electrode is provided. The positive electrode comprises as a positive electrode active material a lithium transition metal composite oxide having a layered structure. The composite oxide contains as its metal components at least one species of Ni, Co and Mn as well as W and Ca. The composite oxide contains 0.26 mol % or more, but 5 mol % or less of W and Ca combined when all the metal elements contained in the oxide excluding lithium account for a total of 100 mol %, with the ratio (mW/mCa) of the number of moles of W contained, mW, to the number of moles of Ca contained, mCa, being 2.0 or larger, but 50 or smaller.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 11, 2013
    Inventor: Hiroki Nagai
  • Patent number: 8470942
    Abstract: The claimed invention relates to a method for producing a melt-moldable tetrafluoroethylene copolymer containing repeating units (a) based on tetrafluoroethylene and repeating units (b) based on another fluoromonomer, wherein the amount of the repeating units (a), based on the total mass of the repeating units (a) and the repeating units (b), is from 97.3 to 99.5 mass %, and the volume flow rate of the copolymer is from 0.1 to 1000 mm3/s; the process including radical suspension-polymerization of tetrafluoroethylene and the fluoromonomer in an aqueous medium in the presence of a radical polymerization initiator and at least one chain transfer agent selected from the group consisting of methane, ethane, a hydrochlorocarbon, a hydrofluorocarbon and a hydrochlorofluorocarbon.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: June 25, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Atsushi Funaki, Shigeki Kobayashi, Hiroki Nagai
  • Publication number: 20130101900
    Abstract: Provided is a lithium secondary battery that comprises a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte. The positive electrode active material is a nickel-containing lithium complex oxide having a layered structure. The oxide has a composition in which W and Zr are added, and contains no Nb.
    Type: Application
    Filed: June 21, 2010
    Publication date: April 25, 2013
    Inventor: Hiroki Nagai
  • Publication number: 20130089787
    Abstract: Disclosed is a lithium ion secondary battery which includes a positive electrode, a negative electrode and a nonaqueous electrolyte solution. The positive electrode contains, as the positive electrode active material, a lithium-transition metal composite oxide having a layered structure. The positive electrode active material includes at least one metal element M0 from among Ni, Co and Mn, and includes at least one metal element M? from among Zr, Nb and Al, and further includes W. When 2 g of a powder of the positive electrode active material and 100 g of pure water are stirred together to prepare a suspension and the suspension is filtered to obtain a filtrate, the amount of W eluted into the filtrate, as measured by inductively coupled plasma mass spectrometry, is 0.025 mmol or less per gram of filtrate.
    Type: Application
    Filed: June 17, 2011
    Publication date: April 11, 2013
    Inventor: Hiroki Nagai
  • Publication number: 20130047721
    Abstract: A method of evaluating a positive electrode active material has a density ratio-determining step of determining a ratio of an apparent density Da of the positive electrode active material to a theoretical density Db of the positive electrode active material. For example, when the positive electrode active material contains no closed space in the positive electrode active material, such as closed pores of the positive electrode active material, the ratio (Da/Db) of the apparent density Da of the positive electrode active material to the theoretical density Db of the positive electrode active material will be a value close to 1; however, the more the closed space such as the closed pores exists in the positive electrode active material, the smaller the ratio (Da/Db). Thus, the ratio (Da/Db) can serve as an indicator for measuring the degree of density of the positive electrode active material.
    Type: Application
    Filed: January 15, 2010
    Publication date: February 28, 2013
    Inventors: Hiroki Nagai, Hidekazu Hiratsuka
  • Publication number: 20130011331
    Abstract: Active material particles are provided that exhibit performance suitable for increasing the output of a lithium secondary battery and little deterioration due to charge-discharge cycling. The active material particles provided by the present invention have a hollow structure having secondary particles including an aggregate of a plurality of primary particles of a lithium transition metal oxide, and a hollow portion formed inside the secondary particles, and through holes that penetrates to the hollow portion from the outside are formed in the secondary particles. BET specific surface area of the active material particles is 0.5 to 1.9 m2/g.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Inventors: Hiroki Nagai, Masahiro Morita, Kensaku Mori, Shin Imaizum, Kenji Ikeuchi, Toshiyuki Osako, Hiroyuki Toya
  • Publication number: 20120295157
    Abstract: A lithium secondary battery of the present invention has a positive electrode is provided with a positive electrode mix layer that includes a positive electrode active material and a conductive material. The positive electrode mix layer has two peaks, large and small, of differential pore volume over a pore size ranging from 0.01 ?m to 10 ?m in a pore distribution curve measured by a mercury porosimeter. A pore size of the smaller peak B of the differential pore volume is smaller than a pore size of the larger peak A of the differential pore volume.
    Type: Application
    Filed: January 21, 2010
    Publication date: November 22, 2012
    Inventors: Hiroki Nagai, Masahiro Morita, Yukihiro Okada
  • Publication number: 20120295164
    Abstract: The method for producing a lithium ion secondary battery includes: selecting a positive electrode sheet, negative electrode sheet, and separator sheet; constructing an electrode assembly by superimposing the selected sheets; and housing the above electrode assembly in a battery case along with an electrolyte solution. In the method, at least one of the sheets is selected such that it satisfies the relationship 0.8<a/b<1.5 where a and b represent the slopes of straight lines respectively that are determined in tests under the respective conditions of (1) a high-rate loading-unloading cycle and (2) a low-rate loading-unloading cycle.
    Type: Application
    Filed: December 25, 2009
    Publication date: November 22, 2012
    Inventors: Tomohiro Nakano, Hiroki Nagai
  • Publication number: 20120288759
    Abstract: A lithium secondary battery of the present invention has a positive electrode is provided with a positive electrode mix layer that includes a positive electrode active material and a conductive material. The positive electrode mix layer has two peaks, large and small, of differential pore volume over a pore size ranging from 0.01 ?m to 10 ?m in a pore distribution curve measured by a mercury porosimeter. A pore size of the smaller peak B of the differential pore volume is smaller than a pore size of the larger peak A of the differential pore volume.
    Type: Application
    Filed: January 21, 2010
    Publication date: November 15, 2012
    Inventors: Hiroki Nagai, Masahiro Morita, Yukihiro Okada
  • Publication number: 20120282525
    Abstract: Active material particles are provided that exhibit performance suitable for increasing the output of a lithium secondary battery and little deterioration due to charge-discharge cycling. The active material particles provided by the present invention have a hollow structure having secondary particles including an aggregate of a plurality of primary particles of a lithium transition metal oxide, and a hollow portion formed inside the secondary particles, and through holes that penetrates to the hollow portion from the outside are formed in the secondary particles. BET specific surface area of the active material particles is 0.5 to 1.9 m2/g.
    Type: Application
    Filed: October 7, 2010
    Publication date: November 8, 2012
    Inventors: Hiroki Nagai, Masahiro Morita, Kensaku Mori, Shin Imaizumi, Kenji Ikeuchi, Toshiyuki Osako, Hiroyuki Toya
  • Publication number: 20120270107
    Abstract: An object of the present invention is to provide nickel cobalt manganese composite hydroxide particles having a small particle diameter and a uniform particle size distribution, and a method for producing the same. [Solution] A method for producing a nickel cobalt manganese composite hydroxide by a crystallization reaction is provided. The method includes: a nucleation step of performing nucleation by controlling a pH of an aqueous solution for nucleation including metal compounds containing nickel, cobalt and manganese, and an ammonium ion donor to 12.0 to 14.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard; and a particle growth step of growing nuclei by controlling a pH of an aqueous solution for particle growth containing nuclei formed in the nucleation step to 10.5 to 12.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard.
    Type: Application
    Filed: December 2, 2010
    Publication date: October 25, 2012
    Inventors: Hiroyuki Toya, Shin Imaizumi, Kensaku Mori, Atsushi Fukui, Kenji Ikeuchi, Kazuomi Ryoshi, Toshiyuki Osako, Hiroki Nagai
  • Publication number: 20120264003
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 18, 2012
    Inventors: Takenori Tsuchiya, Hiroki Nagai, Masahide Hikosaka
  • Publication number: 20120264005
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 18, 2012
    Inventors: Takenori Tsuchiya, Hiroki Nagai, Masahide Hikosaka
  • Publication number: 20120264004
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 18, 2012
    Inventors: Takenori Tsuchiya, Hiroki Nagai, Masahide Hikosaka
  • Publication number: 20120264001
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 18, 2012
    Inventors: Takenori TSUCHIYA, Hiroki NAGAI, Masahide HIKOSAKA
  • Publication number: 20120264006
    Abstract: An electrode is provided with a metal terminal extending from a battery module main body, a bolt which has an expanded section configuring a retaining section at a rear end portion and penetrates the metal terminal upward, and an insulating body which insulates the metal terminal and the battery module case one from the other. The insulating body is provided with a drop preventing section which abuts at least a lower surface of the expanded section of the bolt and prevents the bolt from dropping from the metal terminal.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 18, 2012
    Inventors: Takenori Tsuchiya, Hiroki Nagai, Masahide Hikosaka
  • Publication number: 20120248388
    Abstract: The present invention discloses a method for producing a positive electrode active material for a lithium secondary battery constituted by a lithium-nickel-cobalt-manganese complex oxide with a lamellar structure, the method including: (1) a step of preparing a starting source material for producing the complex oxide including a lithium supply source, a nickel supply source, a cobalt supply source, and a manganese supply source; (2) a step of pre-firing the starting source material by heating at a pre-firing temperature that has been set to a temperature lower than 800° C. and higher than a melting temperature of the lithium supply source; and (3) a step of firing the pre-fired material obtained in the pre-firing step by raising a temperature to a temperature range higher than the pre-firing temperature.
    Type: Application
    Filed: December 14, 2009
    Publication date: October 4, 2012
    Inventors: Hiroki Nagai, Hidekazu Hiratsuka
  • Publication number: 20120241684
    Abstract: Provided is a photoelectric conversion material which is obtained through easy processing from a substance containing silicon oxide, which is inexpensive, imposes no burden on the environment, and is stable, as a component. Also provided are a photocell and a secondary photocell both using this material. Any of synthetic quartz, fused quartz glass, soda-lime glass, non-alkali glass, and borosilicate glass, which are compositions containing silicon oxide, is pulverized, immersed in an aqueous solution of halogen acid, washed with water, and dried. The resultant material is deposited on an electrode plate and this electrode plate is placed in water where an appropriate electrolyte is mixed. This electrode plate is electrically connected to an opposite electrode, and is used as a photoelectrode by irradiated with light.
    Type: Application
    Filed: October 21, 2010
    Publication date: September 27, 2012
    Applicant: INTERNATIONAL FRONTIER TECHNOLOGY LABORATORY, INC.
    Inventors: Nobuaki Komatsu, Tomoko Ito, Shin-ichiro Nanjo, Hiroki Nagai