Patents by Inventor Hiromu Watanabe

Hiromu Watanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10777850
    Abstract: A nonaqueous electrolytic solution, containing an electrolyte, a nonaqueous solvent and an aromatic carboxylate ester of formula (1): wherein A1 is an optionally substituted aryl group, n1 is an integer of 1 or greater, R2 and R3 are a hydrogen atom, a halogen atom or an optionally substituted hydrocarbon group having 1 to 12 carbon atoms, a1 is an integer of 1 or 2, and when a1 is 1, R1 is an optionally substituted hydrocarbon group having 1 to 12 carbon atoms, a1 is 2, R1 is an optionally substituted hydrocarbon group having 1 to 12 carbon atoms, n1 is 1, at least one of R2 and R3 is an optionally substituted hydrocarbon group having 1 to 12 carbon atoms, and n1 is 2 and R2s and R3s are all hydrogen atoms, R1 is an optionally substituted aliphatic hydrocarbon group having 1 to 12 carbon atoms.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: September 15, 2020
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shuhei Sawa, Takashi Fujii, Kanako Ito, Koji Fukamizu, Ryo Yamaguchi, Hiromu Watanabe
  • Patent number: 10629935
    Abstract: In this fuel cell electrode catalyst layer, a catalyst is supported on a carrier comprising inorganic oxide particles. The fuel cell electrode catalyst layer is provided with a porous structure. When a mercury penetration method is used to measure the pore size distribution of the porous structure, a peak is observed in the range spanning from 0.005 ?m to 0.1 ?m inclusive, and a peak is also observed in the range spanning from over 0.1 ?m to not more than 1 ?m. When P1 represents the peak intensity in the range spanning from 0.005 ?m to 0.1 ?m inclusive, and P2 represents the peak intensity in the range spanning from over 0.1 ?m to not more than 1 ?m, the value of P2/P1 is 0.2-10 inclusive. It is preferable that the inorganic oxide be tin oxide.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: April 21, 2020
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Ryoma Tsukuda, Naohiko Abe, Hiromu Watanabe, Susumu Takahashi, Kenichi Amitani, Akiko Sugimoto
  • Publication number: 20190229345
    Abstract: This method for producing an electrode catalyst includes: a dispersion liquid preparation step wherein a dispersion liquid is prepared by mixing (i) at least one solvent selected from the group consisting of sulfoxide compounds and amide compounds, (ii) a catalyst carrier powder composed of a metal oxide, (iii) a platinum compound, (iv) a transition metal compound and (v) an aromatic compound that contains a carboxyl group; a loading step wherein the dispersion liquid is heated so that a platinum alloy of platinum and a transition metal is loaded on the surface of the catalyst carrier powder; a solid-liquid separation step wherein a dispersoid is separated from the dispersion liquid after the loading step, thereby obtaining a catalyst powder wherein the catalyst carrier powder is loaded with the platinum alloy; and a heat treatment step wherein the catalyst powder is heated under vacuum or in a reducing gas atmosphere.
    Type: Application
    Filed: September 29, 2017
    Publication date: July 25, 2019
    Inventors: Yuichi SENOO, Koichi MIYAKE, Koji TANIGUCHI, Hiromu WATANABE, Naohiko ABE
  • Publication number: 20190157688
    Abstract: Provided is a method with which it is possible to easily produce an electrode catalyst having excellent catalytic performance such as kinetically controlled current density. The method involves: a dispersion liquid preparation step of preparing a dispersion liquid by mixing (i) at least one type of solvent selected from the group consisting of sulfoxide compounds and amide compounds, (ii) a catalyst carrier powder constituted by a metal oxide, (iii) a platinum compound, (iv) a transition metal compound, and (v) an aromatic compound including a carboxyl group; and a loading step of heating the dispersion liquid to thereby load a platinum alloy of platinum and a transition metal on a surface of the catalyst carrier powder.
    Type: Application
    Filed: August 25, 2017
    Publication date: May 23, 2019
    Inventors: Yuichi SENOO, Koichi MIYAKE, Koji TANIGUCHI, Hiromu WATANABE, Naohiko ABE, Tatsuya ARAI
  • Publication number: 20190051941
    Abstract: Objects of the invention are to provide nonaqueous electrolytic solutions that allow nonaqueous electrolyte secondary batteries to achieve improvements in initial battery characteristics and in battery characteristics after durability testing at the same time, and to provide nonaqueous electrolyte secondary batteries containing the nonaqueous electrolytic solutions.
    Type: Application
    Filed: October 9, 2018
    Publication date: February 14, 2019
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shuhei SAWA, Takashi FUJII, Kanako ITO, Koji FUKAMIZU, Ryo YAMAGUCHI, HIROMU WATANABE
  • Patent number: 10177414
    Abstract: A nonaqueous electrolytic solution, containing an electrolyte, a nonaqueous solvent, an aromatic carboxylate ester and a compound is provided. The compound is fluorine-containing cyclic carbonates, sulfur-containing organic compounds, phosphonate esters, cyano group-containing organic compounds, isocyanate group-containing organic compounds, silicon-containing compounds, aromatic compounds, cyclic compounds having a plurality of ether bonds, monofluorophosphate salts, difluorophosphate salts, borate salts, oxalate salts or fluorosulfonate salts.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: January 8, 2019
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shuhei Sawa, Takashi Fujii, Kanako Ito, Koji Fukamizu, Ryo Yamaguchi, Hiromu Watanabe
  • Publication number: 20170279143
    Abstract: In this fuel cell electrode catalyst layer, a catalyst is supported on a carrier comprising inorganic oxide particles. The fuel cell electrode catalyst layer is provided with a porous structure. When a mercury penetration method is used to measure the pore size distribution of the porous structure, a peak is observed in the range spanning from 0.005 ?m to 0.1 ?m inclusive, and a peak is also observed in the range spanning from over 0.1 ?m to not more than 1 ?m. When P1 represents the peak intensity in the range spanning from 0.005 ?m to 0.1 ?m inclusive, and P2 represents the peak intensity in the range spanning from over 0.1 ?m to not more than 1 ?m, the value of P2/P1 is 0.2-10 inclusive. It is preferable that the inorganic oxide be tin oxide.
    Type: Application
    Filed: October 21, 2015
    Publication date: September 28, 2017
    Inventors: Ryoma TSUKUDA, Naohiko ABE, Hiromu WATANABE, Susumu TAKAHASHI, Kenichi AMITANI, Akiko SUGIMOTO
  • Publication number: 20160322669
    Abstract: Objects of the invention are to provide nonaqueous electrolytic solutions that allow nonaqueous electrolyte secondary batteries to achieve improvements in initial battery characteristics and in battery characteristics after durability testing at the same time, and to provide nonaqueous electrolyte secondary batteries containing the nonaqueous electrolytic solutions.
    Type: Application
    Filed: July 14, 2016
    Publication date: November 3, 2016
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Shuhei SAWA, Takashi FUJII, Kanako ITO, Koji FUKAMIZU, Ryo YAMAGUCHI, Hiromu WATANABE
  • Patent number: 9461334
    Abstract: An object of the invention is to provide nonaqueous electrolyte batteries having high initial efficiency, excellent initial capacity and excellent overcharge safety, and nonaqueous electrolytic solutions realizing such batteries. A nonaqueous electrolytic solution includes an electrolyte and a nonaqueous solvent, and further includes an aromatic compound represented by Formula (I) (in which R1 to R5 are independently hydrogen, a halogen, or an unsubstituted or halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, R6 and R7 are independently a hydrocarbon group having 1 to 12 carbon atoms, at least two of R1 to R7 may be bonded together to form a ring, and Formula (I) satisfies at least one of the requirements (A) and (B): (A) at least one of R1 to R5 is a halogen, or an unsubstituted or halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, (B) the total number of carbon atoms in R1 to R7 is 3 to 20). A nonaqueous electrolyte battery includes the nonaqueous electrolytic solution.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: October 4, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kanako Ito, Takashi Fujii, Ryo Yamaguchi, Takeshi Nakamura, Hiromu Watanabe, Shuhei Sawa
  • Publication number: 20160211553
    Abstract: An object of the invention is to provide nonaqueous electrolyte batteries having high initial efficiency, excellent initial capacity and excellent overcharge safety, and nonaqueous electrolytic solutions realizing such batteries. A nonaqueous electrolytic solution includes an electrolyte and a nonaqueous solvent, and further includes an aromatic compound represented by Formula (I) (in which R1 to R5 are independently hydrogen, a halogen, or an unsubstituted or halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, R6 and R7 are independently a hydrocarbon group having 1 to 12 carbon atoms, at least two of R1 to R7 may be bonded together to form a ring, and Formula (I) satisfies at least one of the requirements (A) and (B): (A) at least one of R1 to R5 is a halogen, or an unsubstituted or halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, (B) the total number of carbon atoms in R1 to R7 is 3 to 20). A nonaqueous electrolyte battery includes the nonaqueous electrolytic solution.
    Type: Application
    Filed: March 25, 2016
    Publication date: July 21, 2016
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kanako ITO, Takashi FUJII, Ryo YAMAGUCHI, Takeshi NAKAMURA, Hiromu WATANABE, Shuhei SAWA
  • Publication number: 20150243999
    Abstract: A tantalum-containing tin oxide for a fuel cell electrode material, comprising tin oxide containing tantalum. The tantalum content is 0.001-30 mol %. When the tantalum-containing tin oxide is measured by x-ray diffraction, the value for [ITa205/ISnO2]DOPE is smaller than the value for [ITa205/ISnO2]MIX. In addition to the tin oxide particles containing tantalum, ideally a tantalum oxide is present on the surface of the particles. Also, ideally the tantalum oxide is crystalline.
    Type: Application
    Filed: March 6, 2014
    Publication date: August 27, 2015
    Inventors: Seiichiro Takahashi, Naohiko Abe, Hiromu Watanabe, Susumu Takahashi, Koji Taniguchi, Akiko Sugimoto
  • Patent number: 8967805
    Abstract: An ophthalmology apparatus may be provided with an input device, a processor, and an output device. The input device may be configured to input a corneal endothelial cell image to the processor. The corneal endothelial cell image can be obtained by photographing a corneal endothelial cell. The processor may be configured to extract a dark area from the corneal endothelial cell image input by the input device, and to analyze the extracted dark area. The output device may output a result of the analysis by the processor.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: March 3, 2015
    Assignee: Tomey Corporation
    Inventors: Hisashi Kataoka, Hiromu Watanabe
  • Patent number: 8801970
    Abstract: A nitride phosphor contains europium as an activating element and strontium, or strontium and calcium, as divalent metal elements. The phosphor further includes aluminum and silicon. Of the europium in the phosphor, at least 85% is in the form of Eu2+. The phosphor has a peak emission wavelength of from 590 nm to 650 nm. A phosphorescent body that includes the phosphor can be suitable for converting a wavelength of at least a portion of light emitted from an excitation light source in a light-emitting device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 12, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiromu Watanabe, Masumi Itou, Keiichi Seki, Hiroshi Wada, Motoyuki Shigeiwa, Kaoru Terada, Naoto Kijima
  • Patent number: 8636920
    Abstract: A method for industrially producing a phosphor with high performance, in particular, high brightness. Also disclosed is a nitrogen-containing alloy and an alloy powder useful for producing the high performance phosphor. The method for producing the phosphor includes heating a raw material for a phosphor in whole or in part comprising an alloy containing two or more different metal elements under a nitrogen-containing atmosphere and heating the raw material for a phosphor under conditions such that the temperature change per minute is 50° C. or lower. Using an alloy as all or part of the raw material constituting the phosphor precursor, it is possible to suppress the rapid progression of nitridation during heat treatment and industrially produce a phosphor with high performance, in particular, high brightness.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: January 28, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Naoto Kijima, Hiromu Watanabe, Keiichi Seki
  • Publication number: 20130293839
    Abstract: An ophthalmology apparatus may be provided with an input device, a processor, and an output device. The input device may be configured to input a corneal endothelial cell image to the processor. The corneal endothelial cell image can be obtained by photographing a corneal endothelial cell. The processor may be configured to extract a dark area from the corneal endothelial cell image input by the input device, and to analyze the extracted dark area. The output device may output a result of the analysis by the processor.
    Type: Application
    Filed: April 9, 2013
    Publication date: November 7, 2013
    Applicant: TOMEY CORPORATION
    Inventors: Hisashi Kataoka, Hiromu Watanabe
  • Patent number: 8460580
    Abstract: The present invention relates to a phosphor comprising a nitride or an oxynitride, comprising an X-ray powder diffraction pattern comprising at least one Region having at least one peak with an intensity ratio I of 8% or less, the X-ray powder diffraction pattern measured in the 2? range from 10° to 60° using a CuK? line (1.54184 {acute over (?)}), wherein the Region is the 2? range from 41.5° to 47°, the intensity of each peak is a value obtained after background correction, and the intensity ratio I is defined by the formula (Ip×100)/Imax (%), where Imax represents the height of the most intense peak present in the 2? range from 34° to 37° and Ip represents the height of each peak.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiromu Watanabe, Masumi Itou, Keiichi Seki, Hiroshi Wada, Motoyuki Shigeiwa, Kaoru Terada, Naoto Kijima
  • Patent number: 8333079
    Abstract: An adsorption heat pump is provided in which water vapor can be efficiently adsorbed and desorbed using a heat source having a lower temperature than ones heretofore in use because the pump employs an adsorbent which has a large difference in water adsorption amount in adsorption/desorption and can be regenerated (release the adsorbate) at a low temperature. The invention provides an adsorption heat pump which comprises an adsorbate, an adsorption/desorption part having an adsorbent for adsorbate adsorption/desorption, a vaporization part for adsorbate vaporization which has been connected to the adsorption/desorption part, and a condensation part for adsorbate condensation which has been connected to the adsorption/desorption part, wherein the adsorbent, when examined at 25° C., gives a water vapor adsorption isotherm which, in the relative vapor pressure range of from 0.05 to 0.30, has a relative vapor pressure region in which a change in relative vapor pressure of 0.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: December 18, 2012
    Assignees: Mitsubishi Plastics, Inc., Denso Corporation
    Inventors: Hiroyuki Kakiuchi, Takahiko Takewaki, Masaru Fujii, Masanori Yamazaki, Hideaki Takumi, Hiromu Watanabe, Kouji Inagaki, Atsushi Kosaka, Seiji Inoue, Satoshi Inoue
  • Patent number: 8323530
    Abstract: Provided is a phosphor for scintillator that can absorb radiation and convert it into visible light, and which has a short fluorescence decay time. The phosphor contains a lutetium sulfide-containing host material and an activator agent ion, for example, a phosphor comprising a composition represented by the general formula (Lu1-xPrx)2S3, or (Lu1-xCex)2S3.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: December 4, 2012
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tsukasa Takahashi, Motoyuki Tanaka, Shunichi Hatamoto, Hiromu Watanabe
  • Patent number: 8265735
    Abstract: An optical coherence tomography (OCT) anterior eye part imaging apparatus includes a tomographic image obtaining unit obtaining a tomographic image of an anterior eye part of subject's eye in a depth direction by optical coherence tomography, an imaging unit imaging a frontal image of subject's eye, a display unit displaying the image of subject's eye, a corneal apex location detecting unit detecting a location of subject's eye, an alignment unit moving an apparatus body relative to the holder so that the location of corneal apex corresponds with a predetermined image obtaining location, a designating unit designating an area or a location where the tomographic image is obtained on subject's frontal image displayed on the display unit, and a scan line setting unit setting a scan line in the tomographic image obtaining unit on a straight line passing the corneal apex according to the designated area or location.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: September 11, 2012
    Assignee: Tomey Corporation
    Inventors: Chihiro Kato, Keiichiro Okamoto, Kenichi Hayashi, Hiromu Watanabe
  • Publication number: 20120168678
    Abstract: Provided is a phosphor for scintillator that can absorb radiation and convert it into visible light, and which has a short fluorescence decay time. The phosphor contains a lutetium sulfide-containing host material and an activator agent ion, for example, a phosphor comprising a composition represented by the general formula (Lu1-xPrx)2S3, or (Lu1-xCex)2S3.
    Type: Application
    Filed: August 9, 2010
    Publication date: July 5, 2012
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Tsukasa Takahashi, Motoyuki Tanaka, Shunichi Hatamoto, Hiromu Watanabe