Patents by Inventor Hiroshi Matsukizono

Hiroshi Matsukizono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150108467
    Abstract: A semiconductor device (100) according to the present invention is a semiconductor device with a thin-film transistor (10), and includes: a gate electrode (62) which has been formed on a substrate (60) as a part of the thin-film transistor (10); a gate insulating layer (66) which has been formed on the gate electrode (62); an oxide semiconductor layer (68) which has been formed on the gate insulating layer (66); a source electrode (70s) and a drain electrode (70d) which have been formed on the oxide semiconductor layer (68); a protective layer (72) which has been formed on the oxide semiconductor layer (68), the source electrode (70s) and the drain electrode (70d); an oxygen supplying layer (74) which has been formed on the protective layer (72); and an anti-diffusion layer (78) which has been formed on the oxygen supplying layer (74).
    Type: Application
    Filed: December 15, 2011
    Publication date: April 23, 2015
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Masao Moriguchi, Yohsuke Kanzaki, Yudai Takanishi, Takatsugu Kusumi, Hiroshi Matsukizono
  • Patent number: 8975637
    Abstract: A thin film diode (100A) includes a semiconductor layer (130) having first, second, and third semiconductor regions, a first insulating layer (122) formed on the semiconductor layer (130), and a second insulating layer (123) formed on the first insulating layer (122). The first semiconductor region (134A) contains an impurity of a first-conductivity type at a first concentration; the second semiconductor region (135A) contains an impurity of a second-conductivity type different from the first conductivity type at a second concentration; and the third semiconductor region (133A) contains the first-conductivity type impurity at a third concentration lower than the first concentration, or contains the second-conductivity type impurity at a third concentration lower than the second concentration. The first semiconductor region (134A) conforms to an aperture pattern in the second insulating layer (123), or the second semiconductor region (135A) conforms to an aperture pattern in the second insulating layer (123).
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: March 10, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroshi Matsukizono, Tomohiro Kimura, Hiroyuki Ogawa
  • Patent number: 8957418
    Abstract: A semiconductor device according to the present invention includes: a gate electrode (62) of a thin film transistor (10) and an oxygen supply layer (64), the gate electrode (62) and the oxygen supply layer (64) being formed on a substrate (60); a gate insulating layer (66) formed on the gate electrode (62) and the oxygen supply layer (64); an oxide semiconductor layer (68) of the thin film transistor (10), the oxide semiconductor layer (68) being formed on the gate insulating layer (66); and a source electrode (70S) and a drain electrode (70d) of the thin film transistor (10), the source electrode (70S) and the drain electrode (70d) being formed on the gate insulating layer (66) and the oxide semiconductor layer (68).
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 17, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masao Moriguchi, Yohsuke Kanzaki, Yudai Takanishi, Takatsugu Kusumi, Hiroshi Matsukizono
  • Publication number: 20140346502
    Abstract: A semiconductor device (100a) with a thin-film transistor (10a) includes: a gate electrode (62) formed on a substrate (60); a gate insulating layer (66) formed on the gate electrode; an oxide semiconductor layer (68) formed on the gate insulating layer; source and drain electrodes (70s, 70d) electrically connected to the oxide semiconductor layer; a protective layer (72) formed on the oxide semiconductor layer and the source and drain electrodes; an oxygen supplying layer (74) formed on the protective layer; an anti-diffusion layer (78) formed on the oxygen supplying layer; and a transparent electrode (81) formed on the anti-diffusion layer and made of an amorphous transparent oxide.
    Type: Application
    Filed: December 3, 2012
    Publication date: November 27, 2014
    Applicant: Sharp Kabushiki Kaisha
    Inventor: Hiroshi Matsukizono
  • Publication number: 20140306220
    Abstract: To provide a novel semiconductor device in which a reduction in channel length is controlled. The semiconductor device includes an oxide semiconductor layer having a crystal part, and a source electrode layer and a drain electrode layer which are in contact with the oxide semiconductor layer. The oxide semiconductor layer includes a channel formation region and an n-type region in contact with the source electrode layer or the drain electrode layer. The crystal orientation of the crystal part is different between the channel formation region and the n-type region.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 16, 2014
    Inventors: Junichi KOEZUKA, Kenichi OKAZAKI, Masahiro TAKAHASHI, Takuya MATSUO, Shigeyasu MORI, Yosuke KANZAKI, Hiroshi MATSUKIZONO
  • Publication number: 20140306218
    Abstract: Variation in the electrical characteristics of transistors is minimized and reliability of the transistors is improved. A display device includes a pixel portion 104 and a driver circuit portion 106 outside the pixel portion. The pixel portion includes a pixel transistor, a first insulating layer 122 which covers the pixel transistor and includes an inorganic material, a second insulating layer 124 which is over the first insulating layer and includes an organic material, and a third insulating layer 128 which is over the second insulating layer and includes an inorganic material. The driver circuit portion includes a driving transistor for supplying a signal to the pixel transistor, and the first insulating layer covering the driving transistor. The second insulating layer is not formed in the driver circuit portion.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 16, 2014
    Inventors: Junichi KOEZUKA, Masahiro KATAYAMA, Yukinori SHIMA, Kenichi OKAZAKI, Takuya MATSUO, Shigeyasu MORI, Yosuke KANZAKI, Hiroshi MATSUKIZONO
  • Patent number: 8853697
    Abstract: To inhibit a metal element contained in a glass substrate from being diffused into a gate insulating film or an oxide semiconductor film. A semiconductor device includes a glass substrate, a base insulating film formed using metal oxide over the glass substrate, a gate electrode formed over the base insulating film, a gate insulating film formed over the gate electrode, an oxide semiconductor film which is formed over the gate insulating film and overlapping with the gate electrode, and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. In a region of the base insulating film that is present in a range of 3 nm or less from a surface of the base insulating film, the concentration of a metal element contained in the glass substrate is less than or equal to 1×1018 atoms/cm3.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: October 7, 2014
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Kenichi Okazaki, Takuya Matsuo, Yoshitaka Yamamoto, Hiroshi Matsukizono, Yosuke Kanzaki
  • Patent number: 8785926
    Abstract: The semiconductor conductor device includes a gate electrode 106, an oxide semiconductor film 110, a source electrode 114a and a drain electrode 114b, and a channel region formed in the oxide semiconductor film. The channel region is formed between a first side surface 214a of the source electrode and a second side surface 214b of the drain electrode opposite to the first side surface 214a. The oxide semiconductor film has a side surface which overlaps with the gate electrode, which has a first high resistance region positioned between a first region 206a that is the nearest to one end 314a of the first side surface 214a and a second region 206b that is the nearest to one end 314b of the second side surface 214b. The first high resistance region has a corrugated side surface or the like.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: July 22, 2014
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Masatoshi Yokoyama, Tsutomu Murakawa, Kenichi Okazaki, Masayuki Sakakura, Takuya Matsuo, Yosuke Kanzaki, Hiroshi Matsukizono, Yoshitaka Yamamoto
  • Publication number: 20140139775
    Abstract: A semiconductor device includes: a transistor including a gate electrode, a gate insulating film over the gate electrode, a semiconductor layer over the gate insulating film, and a source electrode and a drain electrode over the semiconductor layer; a first insulating film comprising an inorganic material over the transistor; a second insulating film comprising an organic material over the first insulating film; a first conductive film over the second insulating film and in a region overlapping with the semiconductor layer; a third insulating film comprising an inorganic material over the first conductive film; and a second conductive film over the third insulating film and in a region overlapping with the first conductive film. The absolute value of a first potential applied to the first conductive film is greater than the absolute value of a second potential applied to the second conductive film.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 22, 2014
    Inventors: Hiroyuki MIYAKE, Shunpei YAMAZAKI, Yoshifumi TANADA, Manabu SATO, Toshinari SASAKI, Kenichi OKAZAKI, Junichi KOEZUKA, Takuya MATSUO, Hiroshi MATSUKIZONO, Yosuke KANZAKI, Shigeyasu MORI
  • Publication number: 20140117350
    Abstract: To improve the reliability of a transistor as well as to inhibit fluctuation in electric characteristics. A display device includes a pixel portion and a driver circuit portion outside the pixel portion; the pixel portion includes a pixel transistor, a first insulating film covering the pixel transistor and including an inorganic material, a second insulating film including an organic material over the first insulating film, and a third insulating film including an inorganic material over the second insulating film; and the driver circuit portion includes a driving transistor to supply a signal to the pixel transistor, the first insulating film covering the driving transistor, and the second insulating film over the first insulating film, and further includes a region in which the third insulating film is not formed over the second insulating film or a region in which the second insulating film is not covered with the third insulating film.
    Type: Application
    Filed: October 24, 2013
    Publication date: May 1, 2014
    Inventors: Junichi KOEZUKA, Yukinori SHIMA, Yasuharu HOSAKA, Kenichi OKAZAKI, Takuya MATSUO, Shigeyasu MORI, Yosuke KANZAKI, Hiroshi MATSUKIZONO
  • Patent number: 8643010
    Abstract: A semiconductor device includes an oxide semiconductor film in which a channel portion is formed and a gate portion arranged to be opposed to the channel portion. A drain portion in which the oxide semiconductor film has been subjected to resistance reduction process and an intermediate area which is provided between the drain portion and the channel portion and has not been subjected to resistance reduction process are formed in the oxide semiconductor film, and the semiconductor device includes a conductive film to block resistance reduction process to the intermediate area at least at a part.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 4, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hiroshi Matsukizono
  • Publication number: 20140022477
    Abstract: There is provided a liquid crystal display panel that improves the reliability of thin film transistors while suppressing a degradation in display quality. A G TFT (120g) connected at its drain electrode (125d) to a G pixel electrode (130g) is disposed on the opposite side of the G pixel electrode (130g) from a B pixel electrode (130b). The distance between a B TFT (120b) connected at its drain electrode (125d) to the B pixel electrode (130b) and the B pixel electrode (130b) is greater than the distance between the G TFT (120g) connected at its drain electrode (125d) to the G pixel electrode (130g) and the G pixel electrode (130g). The distance between an R TFT (120r) connected at its drain electrode (125d) to an R pixel electrode (130r) and the B pixel electrode (130b) is greater than the distance between the B TFT (120b) connected to the B pixel electrode (130b) and the B pixel electrode (130b).
    Type: Application
    Filed: April 2, 2012
    Publication date: January 23, 2014
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Hiroshi Matsukizono
  • Publication number: 20140021466
    Abstract: A semiconductor device includes a gate electrode; a gate insulating film over the gate electrode; an oxide semiconductor film in contact with the gate insulating film and including a channel formation region which overlaps with the gate electrode; a source electrode and a drain electrode over the oxide semiconductor film; and an oxide insulating film over the oxide semiconductor film, the source electrode, and the drain electrode. The source electrode and the drain electrode each include a first metal film having an end portion at the end of the channel formation region, a second metal film over the first metal film and containing copper, and a third metal film over the second metal film. The second metal film is formed on the inner side than the end portion of the first metal film.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 23, 2014
    Inventors: Shunpei YAMAZAKI, Naoya SAKAMOTO, Takahiro SATO, Shunsuke KOSHIOKA, Takayuki CHO, Yoshitaka YAMAMOTO, Takuya MATSUO, Hiroshi MATSUKIZONO, Yosuke KANZAKI
  • Publication number: 20130285054
    Abstract: A semiconductor device according to the present invention includes: a gate electrode (62) of a thin film transistor (10) and an oxygen supply layer (64), the gate electrode (62) and the oxygen supply layer (64) being formed on a substrate (60); a gate insulating layer (66) formed on the gate electrode (62) and the oxygen supply layer (64); an oxide semiconductor layer (68) of the thin film transistor (10), the oxide semiconductor layer (68) being formed on the gate insulating layer (66); and a source electrode (70S) and a drain electrode (70d) of the thin film transistor (10), the source electrode (70S) and the drain electrode (70d) being formed on the gate insulating layer (66) and the oxide semiconductor layer (68).
    Type: Application
    Filed: December 6, 2011
    Publication date: October 31, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Masao Moriguchi, Yohsuke Kanzaki, Yudai Takanishi, Takatsugu Kusumi, Hiroshi Matsukizono
  • Publication number: 20130270555
    Abstract: An object is to suppress conducting-mode failures of a transistor that uses an oxide semiconductor film and has a short channel length. A semiconductor device includes a gate electrode 304, a gate insulating film 306 formed over the gate electrode, an oxide semiconductor film 308 over the gate insulating film, and a source electrode 310a and a drain electrode 310b formed over the oxide semiconductor film. The channel length L of the oxide semiconductor film is more than or equal to 1 ?m and less than or equal to 50 ?m. The oxide semiconductor film has a peak at a rotation angle 2? in the vicinity of 31° in X-ray diffraction measurement.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 17, 2013
    Applicants: SHARP KABUSHIKI KAISHA, SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kenichi Okazaki, Masatoshi Yokoyama, Masayuki Sakakura, Yukinori Shima, Yosuke Kanzaki, Hiroshi Matsukizono, Takuya Matsuo, Yoshitaka Yamamoto
  • Publication number: 20130270554
    Abstract: The semiconductor conductor device includes a gate electrode 106, an oxide semiconductor film 110, a source electrode 114a and a drain electrode 114b, and a channel region formed in the oxide semiconductor film. The channel region is formed between a first side surface 214a of the source electrode and a second side surface 214b of the drain electrode opposite to the first side surface 214a. The oxide semiconductor film has a side surface which overlaps with the gate electrode, which has a first high resistance region positioned between a first region 206a that is the nearest to one end 314a of the first side surface 214a and a second region 206b that is the nearest to one end 314b of the second side surface 214b. The first high resistance region has a corrugated side surface or the like.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 17, 2013
    Inventors: Masatoshi YOKOYAMA, Tsutomu MURAKAWA, Kenichi OKAZAKI, Masayuki SAKAKURA, Takuya MATSUO, Yosuke KANZAKI, Hiroshi MATSUKIZONO, Yoshitaka YAMAMOTO
  • Publication number: 20130271690
    Abstract: A semiconductor device (1001) includes a thin-film transistor (103) including a gate electrode (3a), source and drain electrodes (13as, 13ad), and an oxide semiconductor layer (7), and a source bus line (13s). The source electrode, the source bus line and the drain electrode include a first metallic element and the oxide semiconductor layer includes a second metallic element. When viewed along a normal to its substrate, at least respective portions of the source electrode, the source bus line, and the drain electrode overlap with the oxide semiconductor layer. A low reflecting layer (4s, 4d) which includes the first and second metallic elements and which has a lower reflectance to visible radiation than the source electrode has been formed between the source electrode and the oxide semiconductor layer, between the source bus line and the oxide semiconductor layer, and between the drain line and the oxide semiconductor layer.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 17, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Hiroshi Matsukizono
  • Publication number: 20130228774
    Abstract: To inhibit a metal element contained in a glass substrate from being diffused into a gate insulating film or an oxide semiconductor film. A semiconductor device includes a glass substrate, a base insulating film formed using metal oxide over the glass substrate, a gate electrode formed over the base insulating film, a gate insulating film formed over the gate electrode, an oxide semiconductor film which is formed over the gate insulating film and overlapping with the gate electrode, and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. In a region of the base insulating film that is present in a range of 3 nm or less from a surface of the base insulating film, the concentration of a metal element contained in the glass substrate is less than or equal to 1×1018 atoms/cm3.
    Type: Application
    Filed: February 26, 2013
    Publication date: September 5, 2013
    Applicants: SHARP KABUSHIKI KAISHA, SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kenichi OKAZAKI, Takuya MATSUO, Yoshitaka YAMAMOTO, Hiroshi MATSUKIZONO, Yosuke KANZAKI
  • Publication number: 20130037800
    Abstract: A semiconductor device includes an oxide semiconductor film in which a channel portion is formed and a gate portion arranged to be opposed to the channel portion. A drain portion in which the oxide semiconductor film has been subjected to resistance reduction process and an intermediate area which is provided between the drain portion and the channel portion and has not been subjected to resistance reduction process are formed in the oxide semiconductor film, and the semiconductor device includes a conductive film to block resistance reduction process to the intermediate area at least at a part.
    Type: Application
    Filed: January 26, 2011
    Publication date: February 14, 2013
    Inventor: Hiroshi Matsukizono
  • Publication number: 20120193635
    Abstract: A thin film diode (100A) includes a semiconductor layer (130) having first, second, and third semiconductor regions, a first insulating layer (122) formed on the semiconductor layer (130), and a second insulating layer (123) formed on the first insulating layer (122). The first semiconductor region (134A) contains an impurity of a first-conductivity type at a first concentration; the second semiconductor region (135A) contains an impurity of a second-conductivity type different from the first conductivity type at a second concentration; and the third semiconductor region (133A) contains the first-conductivity type impurity at a third concentration lower than the first concentration, or contains the second-conductivity type impurity at a third concentration lower than the second concentration. The first semiconductor region (134A) conforms to an aperture pattern in the second insulating layer (123), or the second semiconductor region (135A) conforms to an aperture pattern in the second insulating layer (123).
    Type: Application
    Filed: September 21, 2010
    Publication date: August 2, 2012
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Hiroshi Matsukizono, Tomohiro Kimura, Hiroyuki Ogawa