Patents by Inventor Hiroshi Sohma

Hiroshi Sohma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10581091
    Abstract: A resin-framed membrane electrode assembly includes a membrane electrode assembly, a resin frame, and a clearance. The membrane electrode assembly includes an electrolyte membrane, a first electrode, a second electrode, and a step. The first electrode is located on a first surface of the electrolyte membrane and includes a first catalyst layer and a first diffusion layer which are stacked on the first surface in a stacking direction. The resin frame is disposed outside the membrane electrode assembly. The clearance is provided between the resin frame and an outer edge surface of the first diffusion layer to be filled with a filler such that the filler reaches a level higher than a lower one of a height of the first diffusion layer or a height of the resin frame in cross section in the stacking direction.
    Type: Grant
    Filed: December 25, 2014
    Date of Patent: March 3, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Naoki Mitsuta, Hiroshi Sohma
  • Patent number: 10243221
    Abstract: A resin-framed membrane-electrode assembly for a fuel cell includes a stepped membrane-electrode assembly, a resin frame, and a water-impermeable layer. The stepped membrane-electrode assembly includes a solid polymer electrolyte membrane having a first surface and a second surface opposite to the first surface, a first electrode provided on the first surface, and a second electrode provided on the second surface. The second surface has an exposed surface on an area outside of an outer periphery of the second electrode. The water-impermeable layer is disposed on the exposed surface of the solid polymer electrolyte membrane so that the exposed surface is bonded to an inner protruding portion of the resin frame via the water-impermeable layer and an adhesive and so that a region of the exposed surface where the water-impermeable layer is disposed is larger than a region of the water-impermeable layer where the adhesive is applied.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: March 26, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Naoki Mitsuta, Hiroshi Sohma
  • Patent number: 10128520
    Abstract: A fuel cell includes an electrolyte membrane electrode assembly and a resin frame member. The electrolyte membrane electrode assembly includes an electrolyte membrane, a first electrode and a second electrode. The resin frame member has a recess in which the first electrode, the electrolyte membrane, and a portion of a second electrode catalyst layer protruding from a second gas diffusion layer are disposed, and an insertion hole which is in communication with the recess and in which the second gas diffusion layer is inserted. A filling layer covering an outer edge portion of the second electrode catalyst layer and having an oxygen permeability of 2×105 ml/m2·24 hr·atm or less is formed at least in a space between an inner wall of the insertion hole and the second gas diffusion layer.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 13, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Naoki Mitsuta, Hiroshi Sohma, Yukihito Tanaka
  • Patent number: 9966623
    Abstract: An electrolyte membrane-electrode structure with a resin frame is provided with: an electrolyte membrane-electrode structure that is provided with an anode-side electrode and a cathode-side electrode, with a solid polymer electrolyte membrane being held therebetween; and a resin frame member that is arranged around the outer periphery of the solid polymer electrolyte membrane. An intermediate layer is continuously arranged: between an outer peripheral end portion of the cathode-side electrode and a first inner peripheral end portion of the resin frame member; on an outer peripheral end portion of the solid polymer electrolyte membrane, said outer peripheral end portion being exposed outside the outer peripheral end portion of the cathode-side electrode; and between an outer peripheral end portion of the anode-side electrode and a second inner peripheral end portion of the resin frame member.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: May 8, 2018
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yukihito Tanaka, Kazuo Nunokawa, Hiroshi Sohma, Kenichi Tanaka, Naoki Mitsuta, Masashi Sugishita, Daisuke Okonogi
  • Patent number: 9577276
    Abstract: A membrane electrode assembly includes an MEA structure unit and a resin frame member. The MEA structure unit includes a cathode, an anode, and a solid polymer electrolyte membrane interposed between the cathode and the anode. The resin frame member is formed around the MEA structure unit, and joined to the MEA structure unit. An adhesive layer is provided between an outer marginal portion of the solid polymer electrolyte membrane extending outward beyond an outer end of a second gas diffusion layer and an inner extension of the resin frame member. The adhesive layer includes an overlapped portion overlapped on an outer marginal end of the second gas diffusion layer.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: February 21, 2017
    Assignee: Honda Motor Co., Ltd.
    Inventors: Naoki Mitsuta, Yukihito Tanaka, Masashi Sugishita, Hiroshi Sohma, Kenichi Tanaka, Masahiro Fukuta
  • Patent number: 9559376
    Abstract: Disclosed is a fuel cell in which an electrolyte membrane-electrode structure is held between the first separator and a second separator. The electrolyte membrane-electrode structure comprises a solid polymer electrolyte membrane, a cathode-side electrode and an anode-side electrode. An end portion of the solid polymer electrolyte membrane projects outwardly beyond end portions of gas diffusion layers, and the both surfaces of the end portion of the solid polymer electrolyte membrane are held between the first protective film and a second protective film. The thickness of the first protective film is set to be thinner than the thickness of the second protective film.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: January 31, 2017
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaru Oda, Teruyuki Ohtani, Seiji Sugiura, Kenichi Tanaka, Hiroshi Sohma
  • Publication number: 20160164113
    Abstract: A resin-framed membrane-electrode assembly for a fuel cell includes a stepped membrane-electrode assembly, a resin frame, and a water-impermeable layer. The stepped membrane-electrode assembly includes a solid polymer electrolyte membrane having a first surface and a second surface opposite to the first surface, a first electrode provided on the first surface, and a second electrode provided on the second surface. The second surface has an exposed surface on an area outside of an outer periphery of the second electrode. The water-impermeable layer is disposed on the exposed surface of the solid polymer electrolyte membrane so that the exposed surface is bonded to an inner protruding portion of the resin frame via the water-impermeable layer and an adhesive and so that a region of the exposed surface where the water-impermeable layer is disposed is larger than a region of the water-impermeable layer where the adhesive is applied.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 9, 2016
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Naoki MITSUTA, Hiroshi SOHMA
  • Patent number: 9130206
    Abstract: In a method for manufacturing a resin-framed membrane electrode assembly for a fuel cell, a membrane electrode assembly structure is held between a first framed diffusion layer and a second framed diffusion layer while the membrane electrode assembly structure is housed in a recess provided in at least one of a first resin frame component and a second resin frame component. The first resin frame component and the second resin frame component are joined to each other to integrate the first framed diffusion layer and the second framed diffusion layer. The first and second resin frame components are located outside an outer peripheral portion of the membrane electrode assembly structure.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 8, 2015
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Hiroshi Sohma, Naoki Mitsuta, Yukihito Tanaka
  • Publication number: 20150188152
    Abstract: A resin-framed membrane electrode assembly includes a membrane electrode assembly, a resin frame, and a clearance. The membrane electrode assembly includes an electrolyte membrane, a first electrode, a second electrode, and a step. The first electrode is located on a first surface of the electrolyte membrane and includes a first catalyst layer and a first diffusion layer which are stacked on the first surface in a stacking direction. The resin frame is disposed outside the membrane electrode assembly. The clearance is provided between the resin frame and an outer edge surface of the first diffusion layer to be filled with a filler such that the filler reaches a level higher than a lower one of a height of the first diffusion layer or a height of the resin frame in cross section in the stacking direction.
    Type: Application
    Filed: December 25, 2014
    Publication date: July 2, 2015
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Naoki MITSUTA, Hiroshi SOHMA
  • Patent number: 9012105
    Abstract: A membrane electrode assembly for a fuel cell includes a membrane electrode assembly and a resin frame member. The membrane electrode assembly includes a solid polymer electrolyte membrane, a first electrode, and a second electrode. The first electrode includes a first catalyst layer and a first gas diffusion layer. The second electrode includes a second catalyst layer and a second gas diffusion layer. The resin frame member includes an outer peripheral portion and an inner peripheral projection. A first space includes a gap between an outer peripheral end face of the second gas diffusion layer and an inner-side end face of the inner peripheral projection. A second space includes a gap between an outer peripheral end face of the first gas diffusion layer and an inner-side wall face of the outer peripheral portion. The first space has a dimension different from a dimension of the second space.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: April 21, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Naoki Mitsuta, Hiroshi Sohma, Yukihito Tanaka, Yusuke Okabe, Yu Tomana
  • Publication number: 20140287339
    Abstract: A fuel cell includes an electrolyte membrane electrode assembly and a resin frame member. The electrolyte membrane electrode assembly includes an electrolyte membrane, a first electrode and a second electrode. The resin frame member has a recess in which the first electrode, the electrolyte membrane, and a portion of a second electrode catalyst layer protruding from a second gas diffusion layer are disposed, and an insertion hole which is in communication with the recess and in which the second gas diffusion layer is inserted. A filling layer covering an outer edge portion of the second electrode catalyst layer and having an oxygen permeability of 2×105 ml/m2·24 hr·atm or less is formed at least in a space between an inner wall of the insertion hole and the second gas diffusion layer.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 25, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Naoki MITSUTA, Hiroshi SOHMA, Yukihito TANAKA
  • Publication number: 20140234749
    Abstract: An electrolyte membrane-electrode structure with a resin frame is provided with: an electrolyte membrane-electrode structure that is provided with an anode-side electrode and a cathode-side electrode, with a solid polymer electrolyte membrane being held therebetween; and a resin frame member that is arranged around the outer periphery of the solid polymer electrolyte membrane. An intermediate layer is continuously arranged: between an outer peripheral end portion of the cathode-side electrode and a first inner peripheral end portion of the resin frame member; on an outer peripheral end portion of the solid polymer electrolyte membrane, said outer peripheral end portion being exposed outside the outer peripheral end portion of the cathode-side electrode; and between an outer peripheral end portion of the anode-side electrode and a second inner peripheral end portion of the resin frame member.
    Type: Application
    Filed: September 6, 2012
    Publication date: August 21, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Yukihito Tanaka, Kazuo Nunukawa, Hiroshi Sohma, Kenichi Tanaka, Naoki Mitsuta, Masashi Sugishita, Daisuke Okonogi
  • Patent number: 8808942
    Abstract: An adhesive suitable for solid polymer fuel cells is provided that has sufficient bond durability, so that the solid polymer electrolyte membrane and the gas diffusion layer do not separate, even with the solid polymer electrolyte fuel cell repeatedly wetting and drying, and changing in dimension. An adhesive including a base compound, a cross-linking agent, an adhesion promoting agent, and a reaction catalyst is employed using a specific base compound having alkenyl groups, and a specific cross-linking agent having Si—H groups, in which the ratio of moles of the above Si—H group relative to moles of the above alkenyl group (moles of Si—H group/moles of alkenyl group) is adjusted to the range of 1.0 to 5.0.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: August 19, 2014
    Assignee: Honda Motor Co., Ltd
    Inventors: Satoru Terada, Hiroshi Sohma, Kenichi Tanaka
  • Publication number: 20140011111
    Abstract: A membrane electrode assembly for a fuel cell includes a membrane electrode assembly and a resin frame member. The membrane electrode assembly includes a solid polymer electrolyte membrane, a first electrode, and a second electrode. The first electrode includes a first catalyst layer and a first gas diffusion layer. The second electrode includes a second catalyst layer and a second gas diffusion layer. The resin frame member includes an outer peripheral portion and an inner peripheral projection. A first space includes a gap between an outer peripheral end face of the second gas diffusion layer and an inner-side end face of the inner peripheral projection. A second space includes a gap between an outer peripheral end face of the first gas diffusion layer and an inner-side wall face of the outer peripheral portion. The first space has a dimension different from a dimension of the second space.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 9, 2014
    Inventors: Naoki MITSUTA, Hiroshi SOHMA, Yukihito TANAKA, Yusuke OKABE, Yu TOMANA
  • Publication number: 20140004442
    Abstract: A membrane electrode assembly includes an MEA structure unit and a resin frame member. The MEA structure unit includes a cathode, an anode, and a solid polymer electrolyte membrane interposed between the cathode and the anode. The resin frame member is formed around the MEA structure unit, and joined to the MEA structure unit. An adhesive layer is provided between an outer marginal portion of the solid polymer electrolyte membrane extending outward beyond an outer end of a second gas diffusion layer and an inner extension of the resin frame member. The adhesive layer includes an overlapped portion overlapped on an outer marginal end of the second gas diffusion layer.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 2, 2014
    Inventors: Naoki MITSUTA, Yukihito TANAKA, Masashi SUGISHITA, Hiroshi SOHMA, Kenichi TANAKA, Masahiro FUKUTA
  • Publication number: 20120282539
    Abstract: Disclosed is a fuel cell in which an electrolyte membrane-electrode structure is held between the first separator and a second separator. The electrolyte membrane-electrode structure comprises a solid polymer electrolyte membrane, a cathode-side electrode and an anode-side electrode. An end portion of the solid polymer electrolyte membrane projects outwardly beyond end portions of gas diffusion layers, and the both surfaces of the end portion of the solid polymer electrolyte membrane are held between the first protective film and a second protective film. The thickness of the first protective film is set to be thinner than the thickness of the second protective film.
    Type: Application
    Filed: January 12, 2011
    Publication date: November 8, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Masaru Oda, Teruyuki Ohtani, Seiji Sugiura, Kenichi Tanaka, Hiroshi Sohma
  • Patent number: 8163406
    Abstract: A membrane-electrode assembly for solid polymer electrolyte fuel cell that exhibits superior dimensional stability to high temperature of hot water generated on power generation, and that has both excellent power generation performance and durability in a low temperature environment is provided. According to the membrane-electrode assembly for solid polymer electrolyte fuel cell in which a polyarylene-based copolymer having a specific repeating constitutional unit is used as a proton conductive membrane, the membrane-electrode assembly for solid polymer electrolyte fuel cell that exhibits superior dimensional stability to high temperature of hot water generated on power generation, and that has both excellent power generation performance and durability in a low temperature environment can be provided.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: April 24, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nagayuki Kanaoka, Hiroshi Sohma, Ryohei Ishimaru
  • Patent number: 7887969
    Abstract: A membrane electrode assembly for solid polymer electrolyte fuel cells exhibits higher proton conductivity and superior thermal resistance, in which the solid polymer electrolyte membrane has a nitrogen atom and a sulfonic acid group, and a principal chain of a constitutional unit is a phenylene bond, is provided. In particular, the membrane electrode assembly for solid polymer electrolyte fuel cells preferably contains the sulfonated polyarylene expressed by the formula (1).
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: February 15, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nagayuki Kanaoka, Masaru Iguchi, Hiroshi Sohma
  • Patent number: 7816053
    Abstract: A membrane-electrode assembly having superior hot water resistance has a membrane containing an aromatic polymer having a repeating unit expressed by general formula (1): in which A represents independently either —CO— or —SO2—; B represents independently an oxygen atom or sulfur atom; R1 to R8, which may be identical or different from each other, represent a hydrogen atom, fluorine atom, alkyl group, phenyl group or nitrile group; R9 to R24, which may be identical or different from each other, represent a hydrogen atom, alkyl group or phenyl group; and ‘a’ represents an integer of 0 to 4.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: October 19, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nagayuki Kanaoka, Masaru Iguchi, Hiroshi Sohma
  • Publication number: 20100221638
    Abstract: An adhesive suitable for solid polymer fuel cells is provided that has sufficient bond durability, so that the solid polymer electrolyte membrane and the gas diffusion layer do not separate, even with the solid polymer electrolyte fuel cell repeatedly wetting and drying, and changing in dimension. An adhesive including a base compound, a cross-linking agent, an adhesion promoting agent, and a reaction catalyst is employed using a specific base compound having alkenyl groups, and a specific cross-linking agent having Si—H groups, in which the ratio of moles of the above Si—H group relative to moles of the above alkenyl group (moles of Si—H group/moles of alkenyl group) is adjusted to the range of 1.0 to 5.0.
    Type: Application
    Filed: February 25, 2010
    Publication date: September 2, 2010
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Satoru Terada, Hiroshi Sohma, Kenichi Tanaka