Patents by Inventor Hiroto Sumida

Hiroto Sumida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160199766
    Abstract: A laminated nonwoven fabric includes a first nonwoven fabric that comprises first fibers, and a second nonwoven fabric that comprises second fibers. The second nonwoven fabric is laminated on the first nonwoven fabric. An average fiber diameter D1 of the first fibers and an average fiber diameter D2 of the second fibers satisfy a relation of D1>D2. In viewed from a side of a principal surface of the second nonwoven fabric being not opposed to the first nonwoven fabric, a total area of first portions of the second fibers superimposed on the first fibers and existing on the nearer side than the first fibers is larger than a total area of second portions of the second fibers existing and superimposed on voids S of the first nonwoven fabric formed of the first fibers.
    Type: Application
    Filed: September 30, 2015
    Publication date: July 14, 2016
    Inventors: Koji MOTOMURA, Takahiko MURATA, Hiroto SUMIDA, Takahiro KUROKAWA, Takatoshi MITSUSHIMA
  • Publication number: 20150243951
    Abstract: A battery includes a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolyte. The separator includes a plurality of nanofibers and has a form of a sheet having a first surface and a second surface opposite thereto. When the average maximum fiber diameter of the nanofibers in the plane direction of the separator is compared between in vicinities of the first and second surfaces and at a center portion in the thickness direction of the separator, average maximum fiber diameters Ds1 and Ds2 of the nanofibers in the vicinity of the first and second surfaces are smaller than an average maximum fiber diameter Dc of the nanofibers at the center portion in the thickness direction of the separator.
    Type: Application
    Filed: May 11, 2015
    Publication date: August 27, 2015
    Inventors: Hiroto SUMIDA, Takahiro KUROKAWA, Takayoshi YAMAGUCHI, Takatoshi MITSUSHIMA
  • Patent number: 9059453
    Abstract: A battery includes a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolyte. The separator includes a plurality of nanofibers and has a form of a sheet having a first surface and a second surface opposite thereto. When the average maximum fiber diameter of the nanofibers in the plane direction of the separator is compared between in vicinities of the first and second surfaces and at a center portion in the thickness direction of the separator, average maximum fiber diameters Ds1 and Ds2 of the nanofibers in the vicinity of the first and second surfaces arc smaller than an average maximum fiber diameter Dc of the nanofibers at the center portion in the thickness direction of the separator.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: June 16, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Takayoshi Yamaguchi, Takatoshi Mitsushima
  • Publication number: 20140342027
    Abstract: A nanofiber manufacturing apparatus (100) which produces nanofibers (301) by electrically stretching a solution (300) in space. The apparatus includes: an effusing body (115) having effusing holes (118) for effusing the solution into the space, a tip part (116) in which openings (119) are arranged at given intervals, and two side wall parts (117) provided so as to extend from both sides of the tip part so that the effusing holes are located between the side wall parts and the distance between the side wall parts increases with the distance from the tip part; a charging electrode (121) disposed at a given distance from the effusing body; and a charging power supply (122) which applies a given voltage between the effusing body and the charging electrode.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Inventors: Kazunori ISHIKAWA, Hiroto SUMIDA, Takahiro KUROKAWA, Masanobu MIYATA, Takatoshi MITSUSHIMA
  • Patent number: 8834775
    Abstract: A nanofiber manufacturing apparatus (100) which produces nanofibers (301) by electrically stretching a solution (300) in space. The apparatus includes: an effusing body (115) having effusing holes (118) for effusing the solution into the space, a tip part (116) in which openings (119) are arranged at given intervals, and two side wall parts (117) provided so as to extend from both sides of the tip part so that the effusing holes are located between the side wall parts and the distance between the side wall parts increases with the distance from the tip part; a charging electrode (121) disposed at a given distance from the effusing body; and a charging power supply (122) which applies a given voltage between the effusing body and the charging electrode.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: September 16, 2014
    Assignee: Panasonic Corporation
    Inventors: Kazunori Ishikawa, Hiroto Sumida, Takahiro Kurokawa, Masanobu Miyata, Takatoshi Mitsushima
  • Publication number: 20140227602
    Abstract: Disclosed is a battery with reduced contact resistance at the contact surfaces between the separator and the electrodes, a battery separator capable of reducing contact resistance with the electrodes, and a production method thereof. The battery includes a positive electrode, a negative electrode, a separator interposed therebetween, and an electrolyte. The separator has a matrix structure of nanofibers formed by electrospinning and has a form of a sheet having a first surface and a second surface opposite thereto. When the average maximum fiber diameter of the nanofibers in the plane direction of the separator is compared between in vicinities of the first and second surfaces and at a center portion in the thickness direction of the separator, average maximum fiber diameters Ds1 and Ds2 of the nanofibers in the vicinity of the first and second surfaces are smaller than an average maximum fiber diameter Dc of the nanofibers at the center portion in the thickness direction of the separator.
    Type: Application
    Filed: January 16, 2013
    Publication date: August 14, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Takayoshi Yamaguchi, Takatoshi Mitsushima
  • Patent number: 8696953
    Abstract: A nanofiber manufacturing apparatus for fabricating nanofibers from a raw material liquid by electrostatic explosions includes a housing internally having an electrospinning space in which nanofibers are fabricated, and a support structure for supporting an electrospinning head including nozzles for ejecting the raw material liquid into the electrospinning space. The support structure is fittable to and removable from the housing and is enabled to self-stand in a state of having been removed from the housing.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Hiroyuki Tsuji, Kazunori Ishikawa
  • Patent number: 8696973
    Abstract: A method of manufacturing nanofibers according to an aspect of the present invention by electrically stretching a solution in space and depositing the nanofibers in a given region includes: effusing the solution from an effusing body having an effusing hole which allows the solution to effuse in a direction; applying a given voltage between the effusing body and a charging electrode being conductive and disposed at a given distance from the effusing body, using a charging power supply configured to apply the given voltage; and determining a flight path of the solution and the nanofibers such that a length of the flight path of the solution and the nanofibers is longer than a shortest path length which is a length of a shortest imaginary path connecting an end opening of the effusing hole and an accumulation part on which the nanofibers are accumulated.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventors: Kazunori Ishikawa, Takahiro Kurokawa, Hiroto Sumida
  • Patent number: 8524140
    Abstract: A container having a plurality of orifices in an outer peripheral wall and having a space communicating with the orifices is rotated to extrude an electrically charged raw material liquid containing a polymer material from the space through the orifices by centrifugal force. This allows the electrically charged raw material liquid to form a fibrous material. At this time, the raw material liquid is supplied to the space in which the raw material liquid is filled by a raw material liquid pump so that the raw material liquid is extruded from the orifices at a predetermined pressure. That is, the raw material liquid in the space is pressurized. Also, the shape of the space in the container is set so that the centrifugal force exerted on the raw material liquid is constant.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: September 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kurokawa, Hiroto Sumida, Kazunori Ishikawa, Masahide Yokoyama
  • Publication number: 20130168886
    Abstract: A nanofiber manufacturing apparatus for fabricating nanofibers from a raw material liquid by electrostatic explosions includes a housing internally having an electrospinning space in which nanofibers are fabricated, and a support structure for supporting an electrospinning head including nozzles for ejecting the raw material liquid into the electrospinning space. The support structure is fittable to and removable from the housing and is enabled to self-stand in a state of having been removed from the housing.
    Type: Application
    Filed: September 7, 2011
    Publication date: July 4, 2013
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Hiroyuki Tsuji, Kazunori Ishikawa
  • Patent number: 8475692
    Abstract: Nanofibers are manufactured while preventing explosions from occurring due to solvent evaporation. An effusing unit (201) which effuses solution (300) into a space, a first charging unit (202) which electrically charges the solution (300) by applying an electric charge to the solution (300), a guiding unit (206) which forms an air channel for guiding the manufactured nanofibers (301), a gas flow generating unit (203) which generates, inside the guiding unit (206), gas flow for transporting the nanofibers, a diffusing unit (240) which diffusing the nanofibers (301) guided by the guiding unit (206), a collecting apparatus which electrically attracts and collects the nanofibers (301), and a drawing unit (102) which draws the gas flow together with the evaporated component evaporated from the solution (300) are included.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: July 2, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Yoshiaki Tominaga, Mikio Takezawa, Mitsuhiro Takahashi, Masahide Yokoyama
  • Patent number: 8425810
    Abstract: A nanofiber production device produces nanofibers by stretching, in a space, a solution. The nanofiber production device includes: an effusing body which effuses the solution into the space by centrifugal force; a driving source which rotates the effusing body; a supplying electrode which is placed at a predetermined distance from the effusing body and supplies charge to the solution via the effusing body; a charging electrode to which a potential of reverse polarity to a polarity of the effusing body is applied, with the charging electrode being placed at a predetermined distance from the effusing body; and a charging power source which applies a predetermined voltage between the supplying electrode and the charging electrode.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Kazunori Ishikawa, Takahiro Kurokawa, Hiroto Sumida, Masahide Yokoyama
  • Patent number: 8399066
    Abstract: A nanofiber manufacturing system in which nanofiber is formed from a raw material liquid by electrostatic explosions in a nanofiber forming space and the formed nanofiber is collected and deposited on a main surface of a base sheet. The system includes: a first dielectric belt having dielectric property; sheet conveying devices for conveying the base sheet in the nanofiber forming space; a sheet contacting device for putting a back surface of the base sheet and a first surface of the first dielectric belt into contact with each other; a dielectric belt driving device for running the first dielectric belt in a conveyance direction of the base sheet within the nanofiber forming space while the first surface is kept in contact with the back surface of the base sheet; and a voltage applying device for applying a voltage to the second surface of the first dielectric belt so that dielectric polarization occurs to the first dielectric belt.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kurokawa, Hiroto Sumida, Hiroyuki Tsuji, Kazunori Ishikawa
  • Patent number: 8383539
    Abstract: A carried material is carried only on a surface of nano-fibers. It includes a raw material liquid spray step that sprays raw material liquid, which is a raw material of nano-fibers, into a space, a raw material liquid electrically charging step, which applies an electric charge to the raw material liquid and makes the raw material liquid electrically charged, a nano-fiber manufacturing step that manufactures the nano-fibers by having the electrically charged and sprayed raw material liquid explode electrostatically, a carried material electrically charging step that electrically charges a carried material carried on the nano-fibers with a polarity opposite to a polarity of the electrically charged nano-fibers, and a mixing step that mixes the manufactured nano-fibers and the electrically charged carried material in a space.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: February 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Yoshiaki Tominaga, Mikio Takezawa, Mitsuhiro Takahashi, Takatoshi Mitsushima
  • Publication number: 20120282411
    Abstract: A nanofiber manufacturing system in which nanofiber is formed from a raw material liquid by electrostatic explosions in a nanofiber forming space and the formed nanofiber is collected and deposited on a main surface of a base sheet. The system includes: a first dielectric belt having dielectric property; sheet conveying devices for conveying the base sheet in the nanofiber forming space; a sheet contacting device putting a back surface of the base sheet and a first surface of the first dielectric belt into contact with each other; a dielectric belt driving device for running the first dielectric belt in a conveyance direction of the base sheet within the nanofiber forming space while the first surface is kept in contact with the back surface of the base sheet; and a voltage applying device for applying a voltage to the second surface of the first dielectric belt so that dielectric polarization occurs to the first dielectric belt.
    Type: Application
    Filed: September 22, 2011
    Publication date: November 8, 2012
    Inventors: Takahiro Kurokawa, Hiroto Sumida, Hiroyuki Tsuji, Kazunori Ishikawa
  • Publication number: 20120242010
    Abstract: A deposit of nanofibers which has an even thickness and even quality is produced. A nanofiber manufacturing apparatus according to the present invention includes: an effusing body (115) which has an effusing hole (118) through which a solution (300) is effused; a charging electrode (128); a charging power supply (122) which applies a given voltage between the effusing body (115) and the charging electrode (128); a drawing electrode (121) which draws nanofibers (301) produced in space, the drawing electrode (121) having, on a surface, a planar deposition region (A) onto which the drawn nanofibers (301) are deposited; a drawing power supply (123) which applies a given potential to the drawing electrode (121); and an insulating layer (101) which suppresses variation in resistance values of the nanofibers deposited in the deposition region (A) and is placed throughout the deposition region (A).
    Type: Application
    Filed: December 6, 2010
    Publication date: September 27, 2012
    Inventors: Kazunori Ishikawa, Hiroto Sumida, Takahiro Kurokawa
  • Patent number: 8186987
    Abstract: Provided is a nano-fiber manufacturing apparatus which manufactures nano-fibers by an electrostatic explosion, and has a low possibility of explosion even when a flammable solvent is used. The nano-fiber manufacturing apparatus (101) having an ejection unit (110) which ejects solution (200) that is raw material liquid for nano-fibers (200) to a manufacturing space in which the nano-fibers (200) are manufactured by an electrostatic explosion of the solution (200), and a charging unit which charges the solution (200). The nano-fiber manufacturing apparatus (101) includes a gas supply source (103) which supplies safety gas to change an atmosphere of the manufacturing space, in which the solution (200) is ejected, into a low oxygen atmosphere, and a partition (102) which maintains the manufacturing space at a lower oxygen atmosphere than an atmosphere of an outside space of the partition (102).
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: May 29, 2012
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga
  • Publication number: 20120098150
    Abstract: In a nanofiber manufacturing apparatus (1) which produces nanofibers by electrically stretching a solution in space, a hollow supporting unit (32) which is rotated around an axial line AL by a motor (41) supports a cartridge (33) which supplies a solution (20) stored therein, a pressurizing member (38) is pressurized by air introduced through a rotary joint (43) so that the solution (20) flows into an interior space (34a) of an effusing body (34) which is rotated together with the supporting body (32), and the solution (20) is radially effused from effusing holes (34c) by the pressure of the air and centrifugal force due to the rotation of the effusing body (34).
    Type: Application
    Filed: June 21, 2010
    Publication date: April 26, 2012
    Inventors: Takahiro Kurokawa, Hiroto Sumida, Masahide Yokoyama, Kazunori Ishikawa
  • Patent number: 8163227
    Abstract: A nanofiber spinning method and device for producing a high strength and uniform yarn made of nanofibers. The device includes: a nanofiber producing unit (2) which produces nanofibers (11) by extruding polymer solution, prepared by dissolving polymeric substances in a solvent, through small holes (7) and charging the polymer solution, and by allowing the polymer solution to be stretched by an electrostatic explosion, and which allows the nanofibers to travel in a single direction; a collecting electrode unit (3) to which an electric potential different from that of the charged polymer solution is applied, and which attracts the produced nanofibers (11) while simultaneously rotating and twisting the nanofibers, and gathers them for forming a yarn (20) made of the nanofibers (11); and a collecting unit (5) which collects the yarn (20) passed through the center of the collecting electrode unit (3).
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: April 24, 2012
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga
  • Publication number: 20120091606
    Abstract: A method for manufacturing a fine polymer including: generating superheated steam by a superheated steam generating unit (101); adjusting the pressure of the generated superheated steam by a pressure adjusting unit (102); receiving a polymer by a reception unit (103); heating the received polymer to a predetermined temperature by a heating unit (104); discharging the heated polymer through a first discharge port (111); and discharging the superheated steam through a second discharge port (121) at the same time as the time when the heated polymer is discharged. Here, the second discharge port (121) surrounds the first discharge port (111), and the first discharge port (111) and the second discharge port (121) face the same direction.
    Type: Application
    Filed: December 27, 2011
    Publication date: April 19, 2012
    Inventors: Mitsuhiro TAKAHASHI, Mikio Takezawa, Yoshiaki Tominaga, Takahiro Kurokawa, Hiroto Sumida, Kazunori Ishikawa