Patents by Inventor Hiroto Sumida

Hiroto Sumida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8110136
    Abstract: Nanofibers are formed from a polymer material by rotating a conductive rotating container having a plurality of small holes while supplying a polymer solution formed by dissolving a polymer material in a solvent into the rotating container, charging the polymer solution discharged from the small holes of the rotating container by charging means, and drawing the discharged filamentous polymer solution by centrifugal force and an electrostatic explosion resulting from evaporation of the solvent. The nanofibers from this production step are oriented and made to flow from one side toward the other side in a shaft center direction of the rotating container by a reflecting electrode and/or blowing means, or those nanofibers are deposited, to produce a polymer web. The nanofibers and the polymer web using these nanofibers can be produced uniformly by a simple configuration with good productivity.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: February 7, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga, Takahiro Kurokawa, Kazunori Ishikawa, Hiroto Sumida
  • Publication number: 20120025429
    Abstract: Provided is a nanofiber manufacturing apparatus including an effusing body (115) having an effusing hole (118) which allows the solution (300) to effuse in a given direction, a charging electrode (128) which is conductive and is disposed at a given distance from the effusing body (115), a charging power supply (122) configured to apply a given voltage between the effusing body (115) and the charging electrode (128), and a determining unit (102) configured to determine a flight path of the solution (300) and the nanofibers such that a length of the flight path C is longer than a shortest path length B which is a length of a shortest imaginary path connecting an end opening (119) of the effusing hole (118) and an accumulation part A on which the nanofibers (301) are accumulated.
    Type: Application
    Filed: October 27, 2010
    Publication date: February 2, 2012
    Inventors: Kazunori Ishikawa, Takahiro Kurokawa, Hiroto Sumida
  • Publication number: 20120013047
    Abstract: A nanofiber manufacturing apparatus (100) which produces nanofibers (301) by electrically stretching a solution (300) in space, includes: an effusing body (115) having effusing holes (118) for effusing the solution (300) into the space, a tip part (116) in which openings (119) at ends of the effusing holes (118) are one-dimensionally arranged at given intervals, and two side wall parts (117) provided extending from both sides of the tip part (116) so that the effusing holes (118) are located between the side wall parts (117) and distance between the side wall parts (117) increases with distance from the tip part (116); a charging electrode (121) disposed at a given distance from the effusing body (115); and a charging power supply (122) which applies a given voltage between the effusing body (115) and the charging electrode (121).
    Type: Application
    Filed: August 11, 2010
    Publication date: January 19, 2012
    Inventors: Kazunori Ishikawa, Hiroto Sumida, Takahiro Kurokawa, Masanobu Miyata, Takatoshi Mitsushima
  • Publication number: 20110278751
    Abstract: A nanofiber production device (100) produces nanofibers (301) by stretching, in space, a solution (300). The nanofiber production device (100) includes: an effusing body (115) which effuses the solution (300) into the space by centrifugal force; a driving source (117) which rotates the effusing body (115); a supplying electrode (124) which is placed at a predetermined distance from the effusing body (115) and supplies charge to the solution (300) via the effusing body (115); a charging electrode (121) to which a potential of reverse polarity to a polarity of the effusing body (115) is applied, the charging electrode (121) is placed at a predetermined distance from the effusing body (115); and a charging power source (122) which applies a predetermined voltage between the supplying electrode (124) and the charging electrode (121).
    Type: Application
    Filed: January 19, 2010
    Publication date: November 17, 2011
    Inventors: Kazunori Ishikawa, Takahiro Kurokawa, Hiroto Sumida, Masahide Yokoyama
  • Publication number: 20110156319
    Abstract: A container having a plurality of orifices in an outer peripheral wall and having a space communicating with the orifices is rotated to extrude an electrically charged raw material liquid containing a polymer material from the space through the orifices by centrifugal force. This allows the electrically charged raw material liquid to form a fibrous material. At this time, the raw material liquid is supplied to the space in which the raw material liquid is filled by a raw material liquid pump so that the raw material liquid is extruded from the orifices at a predetermined pressure. That is, the raw material liquid in the space is pressurized. Also, the shape of the space in the container is set so that the centrifugal force exerted on the raw material liquid is constant.
    Type: Application
    Filed: September 10, 2009
    Publication date: June 30, 2011
    Inventors: Takahiro Kurokawa, Hiroto Sumida, Kazunori Ishikawa, Masahide Yokoyama
  • Publication number: 20110059261
    Abstract: Nanofibers are manufactured while preventing explosions from occurring due to solvent evaporation. An effusing unit (201) which effuses solution (300) into a space, a first charging unit (202) which electrically charges the solution (300) by applying an electric charge to the solution (300), a guiding unit (206) which forms an air channel for guiding the manufactured nanofibers (301), a gas flow generating unit (203) which generates, inside the guiding unit (206), gas flow for transporting the nanofibers, a diffusing unit (240) which diffusing the nanofibers (301) guided by the guiding unit (206), a collecting apparatus which electrically attracts and collects the nanofibers (301), and a drawing unit (102) which draws the gas flow together with the evaporated component evaporated from the solution (300) are included.
    Type: Application
    Filed: March 23, 2009
    Publication date: March 10, 2011
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Yoshiaki Tominaga, Mikio Takezawa, Mitsuhiro Takahashi, Masahide Yokoyama
  • Publication number: 20110014542
    Abstract: A carried material is carried only on a surface of nano-fibers. It includes a raw material liquid spray step that sprays raw material liquid (300), which is a raw material of nano-fibers (301), into a space, a raw material liquid electrically charging step, which applies an electric charge to the raw material liquid (300) and makes the raw material liquid electrically charged, a nano-fiber manufacturing step that manufactures the nano-fibers (301) by having the electrically'charged and sprayed raw material liquid (300) explode electrostatically, a carried material electrically charging step that electrically charges a carried material (302) carried on the nano-fibers (301) with a polarity opposite to a polarity of the electrically charged nano-fibers (301), and a mixing step that mixes the said manufactured nano-fibers (301) and the electrically charged carried material (302) in a space.
    Type: Application
    Filed: March 9, 2009
    Publication date: January 20, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Yoshiaki Tominaga, Mikio Takezawa, Mitsuhiro Takahashi, Takatoshi Mitsushima
  • Publication number: 20100187729
    Abstract: A method for manufacturing a fine polymer including: generating superheated steam by a superheated steam generating unit (101); adjusting the pressure of the generated superheated steam by a pressure adjusting unit (102); receiving a polymer by a reception unit (103); heating the received polymer to a predetermined temperature by a heating unit (104); discharging the heated polymer through a first discharge port (111); and discharging the superheated steam through a second discharge port (121) at the same time as the time when the heated polymer is discharged. Here, the second discharge port (121) surrounds the first discharge port (111), and the first discharge port (111) and the second discharge port (121) face the same direction.
    Type: Application
    Filed: July 4, 2008
    Publication date: July 29, 2010
    Inventors: Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga, Takahiro Kurokawa, Hiroto Sumida, Kazunori Ishikawa
  • Publication number: 20100148405
    Abstract: An object of the present invention is to stabilize the properties of nanofibers produced. Solution prepared by dissolving a polymeric substance in a solvent is supplied into a conductive ejection container having a plurality of ejection holes. The ejection container is rotated and electrostatic explosions of the solution discharged through the ejection holes are caused so that nanofibers are produced. In the above method for producing nanofibers, in the case where the amount of the solution contained in the ejection container exceeds a predetermined amount, the amount of the solution exceeding the predetermined amount overflow the ejection container. The overflowed solution is collected and resupplied to the ejection container.
    Type: Application
    Filed: May 12, 2008
    Publication date: June 17, 2010
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga
  • Publication number: 20100092687
    Abstract: Provided is a nano-fiber manufacturing apparatus which manufactures nano-fibers by an electrostatic explosion, and has a low possibility of explosion even when a flammable solvent is used. The nano-fiber manufacturing apparatus (101) having an ejection unit (110) which ejects solution (200) that is raw material liquid for nano-fibers (200) to a manufacturing space in which the nano-fibers (200) are manufactured by an electrostatic explosion of the solution (200), and a charging unit which charges the solution (200). The nano-fiber manufacturing apparatus (101) includes a gas supply source (103) which supplies safety gas to change an atmosphere of the manufacturing space, in which the solution (200) is ejected, into a low oxygen atmosphere, and a partition (102) which maintains the manufacturing space at a lower oxygen atmosphere than an atmosphere of an outside space of the partition (102).
    Type: Application
    Filed: February 19, 2008
    Publication date: April 15, 2010
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsushiro Takahasi, Mikio Takezawa, Yoshiaki Tominaga
  • Publication number: 20100072674
    Abstract: Nanofibers are formed from a polymer material by rotating a conductive rotating container having a plurality of small holes while supplying a polymer solution formed by dissolving a polymer material in a solvent into the rotating container, charging the polymer solution discharged from the small holes of the rotating container by charging means, and drawing the discharged filamentous polymer solution by centrifugal force and an electrostatic explosion resulting from evaporation of the solvent. The nanofibers from this production step are oriented and made to flow from one side toward the other side in a shaft center direction of the rotating container by a reflecting electrode and/or blowing means, or those nanofibers are deposited, to produce a polymer web. The nanofibers and the polymer web using these nanofibers can be produced uniformly by a simple configuration with good productivity.
    Type: Application
    Filed: November 20, 2007
    Publication date: March 25, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga, Takahiro Kurokawa, Kazunori Ishikawa, Hiroto Sumida
  • Patent number: 6916394
    Abstract: A connecting member, used for serially connecting two carrier tapes, comprises a base film, a belt-like reference band substantially fixed on the base film, a bonding tape adhering on the base film, and a cover film covering the bonding tape. A straight reference face is provided on a longitudinal side of the reference band closely to the bonding tape.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: July 12, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroto Sumida, Kunio Tanaka
  • Publication number: 20050096781
    Abstract: By a component feed method for conveying a belt-shaped component-feeding member, in which component storage sections that store a plurality of electronic components while allowing the components to be picked up and feed perforations are formed at regular intervals in their lengthwise direction, in its rotational direction by the rotation around the center of rotation of a feed rotor on the outer periphery of which a plurality of feed claws capable of being engaged with the feed perforations and positioning each of the storage sections in a component pickup position to feed the component from the positioned storage section, the rotational driving amount of the feed rotor is controlled on the basis of correctional driving amount data of the rotational driving of the feed rotor formed based on displacement amount data of each of the feed claws with respect to the center of rotation or the rotational direction of the feed rotor, and the components are positioned successively in the component pickup position to fe
    Type: Application
    Filed: February 18, 2003
    Publication date: May 5, 2005
    Inventors: Hiroto Sumida, Minoru Kitani
  • Patent number: 6878424
    Abstract: A connecting member, used for serially connecting two carrier tapes, comprises a base film, a belt-like reference band substantially fixed on the base film, a bonding tape adhering on the base film, and a cover film covering the bonding tape. A straight reference face is provided on a longitudinal side of the reference band closely to the bonding tape.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: April 12, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroto Sumida, Kunio Tanaka
  • Publication number: 20040011701
    Abstract: A connecting member, used for serially connecting two carrier tapes, comprises a base film, a belt-like reference band substantially fixed on the base film, a bonding tape adhering on the base film, and a cover film covering the bonding tape. A straight reference face is provided on a longitudinal side of the reference band closely to the bonding tape.
    Type: Application
    Filed: July 23, 2003
    Publication date: January 22, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroto Sumida, Kunio Tanaka
  • Publication number: 20020040761
    Abstract: A connecting member, used for serially connecting two carrier tapes, comprises a base film, a belt-like reference band substantially fixed on the base film, a bonding tape adhering on the base film, and a cover film covering the bonding tape. A straight reference face is provided on a longitudinal side of the reference band closely to the bonding tape.
    Type: Application
    Filed: October 11, 2001
    Publication date: April 11, 2002
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroto Sumida, Kunio Tanaka
  • Patent number: 6296145
    Abstract: A parts feeder is provided which is designed to pick up parts carried by a strip carrier. The strip carrier is moved intermittently to a pickup station and has storage chambers arrayed in a lengthwise direction thereof. The storage chambers has openings and stores therein the parts each of which has formed on ends thereof electrodes having at least a magnetic portion. A magnet which has a non-pole face oriented to the strip carrier is disposed at the pickup station for magnetically keeping each of the parts in a desired orientation within one of the storage chambers.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: October 2, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroto Sumida, Kunio Tanaka, Toshihiko Nagaya, Tomonori Fujita
  • Patent number: D478880
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 26, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hiroto Sumida