Patents by Inventor Hirotsugu Takeuchi

Hirotsugu Takeuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7694529
    Abstract: In a refrigerant cycle device, a radiator has a heat radiating portion for radiating high-pressure refrigerant discharged from a compressor and a refrigerant outlet downstream from the heat radiating portion, an ejector includes a nozzle portion for decompressing and expanding refrigerant and a refrigerant suction port for sucking refrigerant by high-velocity refrigerant flow jetted from the nozzle portion. The refrigerant cycle device includes a throttle unit for decompressing refrigerant flowing out of the refrigerant outlet of the radiator, an evaporator located between a refrigerant downstream side of the throttle unit and the refrigerant suction port of the ejector, and a branch portion located within the heat radiating portion of the radiator to branch a refrigerant flow. In the refrigerant cycle device, the nozzle portion has a nozzle inlet coupled to the branch portion so that refrigerant flows into the nozzle inlet from the branch portion of the radiator.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: April 13, 2010
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho
  • Patent number: 7690218
    Abstract: An ejector refrigerant cycle device includes a radiator for radiating heat of high-temperature and high-pressure refrigerant discharged from a compressor, a branch portion for branching a flow of refrigerant on a downstream side of the radiator into a first stream and a second stream, an ejector that includes a nozzle portion for decompressing and expending refrigerant of the first stream from the branch portion, a decompression portion for decompressing and expanding refrigerant of the second stream from the branch portion, and an evaporator for evaporating refrigerant on a downstream side of the decompression portion. The evaporator has a refrigerant outlet coupled to the refrigerant suction port of the ejector. Furthermore, a refrigerant radiating portion is provided for radiating heat of refrigerant while the decompression portion decompresses and expands refrigerant. For example, the refrigerant radiating portion is provided in an inner heat exchanger.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: April 6, 2010
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima, Hideya Matsui
  • Patent number: 7654108
    Abstract: A unit for a refrigerant cycle device includes an ejector that has a nozzle part which decompresses refrigerant, and a refrigerant suction port from which refrigerant is drawn by a high-speed refrigerant flow jetted from the nozzle part, a first evaporator connected to the outlet of the ejector, and a second evaporator connected to the refrigerant suction port of the ejector. One of the first evaporator and the second evaporator has a tank structure that includes a tank for distributing refrigerant into or for collecting the refrigerant from refrigerant passages of a heat exchanging part. The tank has therein a first space through which the refrigerant discharged from the outlet of the ejector flows into a heat exchanging part of the first evaporator, and a second space through which the refrigerant to be drawn into the refrigerant suction port flows into a heat exchanging part of the second evaporator.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: February 2, 2010
    Assignee: Denso Corporation
    Inventors: Naohisa Ishizaka, Thuya Aung, Hiroshi Oshitani, Yoshiaki Takano, Mika Gocho, Hirotsugu Takeuchi, Yoshiyuki Okamoto
  • Patent number: 7520142
    Abstract: An ejector type refrigerating cycle comprises a compressor, a heat radiating device, an ejector, and a first vaporizing device, which are connected in a circuit to form a refrigerating cycle. A bypass passage is provided between an inlet port and a suction port of the ejector, so that a part of the refrigerant is bifurcated to flow through the bypass passage. A second vaporizing device is provided in the bypass passage. An internal heat exchanger is further provided between an outlet side of the heat radiating device and the inlet side of the ejector, so that the enthalpy of the high-pressure refrigerant from the heat radiating device is reduced, to thereby increase an enthalpy difference between the inlet side and outlet side of the first and second vaporizing devices. As a result, the cooling capability by the both vaporizing devices can be improved.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: April 21, 2009
    Assignee: Denso Corporation
    Inventors: Mika Saito, Hirotsugu Takeuchi, Yoshiaki Takano, Hiroshi Oshitani, Naohisa Ishizaka, Gota Ogata, Takuo Maehara
  • Publication number: 20090095013
    Abstract: An ejector cycle system with a refrigerant cycle through which refrigerant flows includes an ejector disposed downstream of a radiator, a first evaporator located to evaporate refrigerant flowing out of the ejector, a branch passage branched from a branch portion between the radiator and a nozzle portion of the ejector and coupled to a refrigerant suction port of the ejector, a throttling unit located in the branch passage, and a second evaporator located downstream of the throttling unit to evaporate refrigerant. In the ejector cycle system, a variable throttling device is located in a refrigerant passage between a refrigerant outlet of the radiator and the branch portion to decompress the refrigerant flowing out of the radiator.
    Type: Application
    Filed: December 8, 2008
    Publication date: April 16, 2009
    Inventors: Makoto Ikegami, Hiroshi Oshitani, Etsuhisa Yamada, Naohisa Ishizaka, Hirotsugu Takeuchi, Takeyuki Sugiura, Takuo Maehara
  • Patent number: 7513128
    Abstract: An ejector-type cycle, for exchanging heat using a refrigerant, comprises: a compressor for compressing the refrigerant; a condenser for condensing the compressed refrigerant, a first orifice arranged downstream of the condenser; an ejector arranged downstream of the first orifice and capable of exhibiting a sucking force at the inlet thereof; a first evaporator for exchanging heat with an external fluid by passing the refrigerant and having a refrigerant outlet connected to the inlet of the ejector; a dryness degree adjusting mechanism interposed between the first orifice and the ejector and connected to the ejector and the first evaporator so as to supply the refrigerant thereto, and a second orifice arranged downstream of and connected to the dryness degree adjusting mechanism.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: April 7, 2009
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Hirotsugu Takeuchi, Haruyuki Nishijima
  • Publication number: 20080264097
    Abstract: A first evaporator connected to an outlet side of an ejector, a second evaporator connected to a refrigerant suction port of the ejector, a throttle mechanism arranged on an inlet side of a refrigerant flow of the second evaporator and for reducing the pressure of the refrigerant flow are provided. Furthermore, the ejector, the first evaporator, the second evaporator and the throttle mechanism are assembled integrally with each other to construct an integrated unit having one refrigerant inlet and one refrigerant outlet. Hence, mounting performance of an ejector type refrigeration cycle can be improved.
    Type: Application
    Filed: April 4, 2006
    Publication date: October 30, 2008
    Applicant: Denso Corporation
    Inventors: Naohisa Ishizaka, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho, Hiroshi Oshitani, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama, Etsuhisa Yamada
  • Patent number: 7428826
    Abstract: An ejector cycle device includes a compressor, a refrigerant radiator disposed to radiate heat of refrigerant discharged from the compressor, an ejector having a nozzle, a first evaporator for evaporating refrigerant from the ejector, a branch passage, which is branched from a refrigerant downstream side of the refrigerant radiator and is connected to a refrigerant suction port of the ejector, a throttle member disposed in the branch passage to decompress refrigerant flowing from the refrigerant radiator, a second evaporator disposed in the branch passage between the throttle member and the refrigerant suction port of the ejector, and a gas-liquid separator having an inlet connected to a downstream side of the first evaporator and an outlet from which gas refrigerant is introduced to a refrigerant suction side of the compressor. Thus, refrigerant amounts flowing to the first and second evaporators can be suitably controlled.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: September 30, 2008
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Saito, Naohisa Ishizaka
  • Patent number: 7367200
    Abstract: An ejector cycle device includes an ejector having a nozzle portion which decompresses refrigerant flowing out of a radiator, a first evaporator for evaporating refrigerant from the ejector, and a second evaporator provided in a branch passage that is branched from a position between the refrigerant radiator and the ejector and is connected to a refrigerant suction port of the ejector. Furthermore, a throttle member is disposed in the branch passage to decompress refrigerant and adjust a flow amount of refrigerant, and the second evaporator is disposed in the branch passage between the throttle member and the refrigerant suction port. In the ejector cycle device having both the first and second evaporators, a defrosting operation of one the first and second evaporators can be performed while the other one of the first and second evaporators is operated to have a cooling function.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: May 6, 2008
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Haruyuki Nishijima, Hiroshi Oshitani, Etsuhisa Yamada, Takuo Maehara
  • Patent number: 7367202
    Abstract: A refrigerant cycle device includes a compressor for compressing refrigerant, a condenser for cooling and condensing high-pressure refrigerant discharged from the compressor, a vapor-liquid separator located at a refrigerant outlet side of the condenser for separating refrigerant from the condenser into vapor refrigerant and liquid refrigerant, a supercooling device for supercooling the liquid refrigerant from the vapor-liquid separator, an ejector having a nozzle part for decompressing refrigerant downstream from a refrigerant outlet side of the condenser and a refrigerant suction port for drawing refrigerant by a high-velocity flow of refrigerant jetted from the nozzle part, a throttle member which decompresses the liquid refrigerant supercooled by the supercooling device, an evaporator located at a downstream side of the throttle member and is connected to the refrigerant suction port of the ejector.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: May 6, 2008
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Hirotsugu Takeuchi, Haruyuki Nishijima
  • Publication number: 20080098757
    Abstract: In a refrigerant cycle device having an ejector, a branch portion for branching a flow of refrigerant flowing out of the ejector into at least a first refrigerant stream and a second refrigerant stream is located. A first evaporator for evaporating the refrigerant of the first refrigerant stream is located to allow the refrigerant to flow to a suction side of the compressor, and a second evaporator for evaporating the refrigerant of the second refrigerant stream is located to allow the refrigerant to flow to an upstream side of a refrigerant suction port of the ejector. In addition, the branch portion is located to maintain a dynamic pressure of the refrigerant flowing out of the ejector, and the second evaporator is connected to the branch portion in a range where the dynamic pressure can be applied to an inside of the second evaporator.
    Type: Application
    Filed: October 25, 2007
    Publication date: May 1, 2008
    Applicant: DENSO Corporation
    Inventors: Hirotsugu Takeuchi, Makoto Ikegami, Haruyuki Nishijima
  • Publication number: 20080087040
    Abstract: A refrigerant cycle device includes a branch portion for branching a flow of refrigerant discharged from a compressor, a first radiator for radiating one high-temperature and high-pressure refrigerant branched at the branch portion, an ejector including a nozzle portion for decompressing refrigerant on a downstream side of the first radiator, a second radiator for radiating the other high-temperature and high-pressure refrigerant branched at the branch portion, a throttle device for decompressing refrigerant on a downstream side of the second radiator, and a suction side evaporator for evaporating refrigerant downstream of the throttle device and for allowing the refrigerant to flow to an upstream side of a refrigerant suction port of the ejector. Furthermore, the first and second radiators are disposed downstream of the branch portion such that a heat radiation amount of refrigerant in the first radiator is smaller than that in the second radiator.
    Type: Application
    Filed: August 6, 2007
    Publication date: April 17, 2008
    Applicant: DENSO Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho
  • Patent number: 7347062
    Abstract: An ejector cycle with an ejector includes a nozzle for decompressing refrigerant. A receiver for storing refrigerant is disposed at a refrigerant outlet side of a condenser. A bypass passage and a switching valve for opening and closing the bypass passage are provided so that high-temperature refrigerant discharged from a compressor is introduced into an evaporator while bypassing the condenser in a defrosting operation. When the defrosting operation is set, the switching valve is opened while a fan for blowing cool air to the condenser is operated. A part of refrigerant discharged from the compressor flows into the evaporator to remove frost on a surface of the evaporator.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: March 25, 2008
    Assignee: DENSO Corporation
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Toru Ikemoto, Hisatsugu Matsunaga, Takeharu Asaoka
  • Publication number: 20080060378
    Abstract: An ejector for a refrigerant cycle device includes a nozzle portion for decompressing and expanding refrigerant flowing therein, and a body portion which accommodates the nozzle portion to support the nozzle portion at a support portion. The body portion has a refrigerant suction port from which refrigerant is drawn by a high-speed refrigerant flow jetted from a nozzle outlet of the nozzle portion. The nozzle portion is located in the body portion to have an ejector refrigerant passage through which the refrigerant flows. In the ejector, the nozzle portion is supported in the body portion to have the following relationship of 0<L/d?14, in which L/d is a ratio of a length (L) between a downstream tip portion of the support portion and the nozzle outlet to a diameter (d) of the nozzle outlet.
    Type: Application
    Filed: September 6, 2007
    Publication date: March 13, 2008
    Applicant: DENSO Corporation
    Inventors: Mika Gocho, Hirotsugu Takeuchi, Yoshiaki Takano, Hiroshi Oshitani, Yasuhiro Yamamoto
  • Patent number: 7340908
    Abstract: A vapor-compression refrigerant cycle device includes an ejector, a first evaporator for evaporating refrigerant flowing out of a pressure-increasing portion of the ejector, a second evaporator for evaporating refrigerant to be drawn into a refrigerant suction port of the ejector. In the refrigerant cycle device, a refrigerant suction pipe is connected to a refrigerant outlet of the second evaporator and the refrigerant suction port of the ejector, and the surface of the refrigerant suction pipe is covered by an insulating member. Furthermore, the ejector, the first evaporator, the second evaporator and the refrigerant suction pipe are arranged in a passenger compartment of the vehicle.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: March 11, 2008
    Assignee: DENSO Corporation
    Inventors: Hiroshi Oshitani, Katsuya Kusano, Hirokazu Imai, Hirotsugu Takeuchi, Mika Saito
  • Patent number: 7334427
    Abstract: In an ejector, a nozzle includes a nozzle tapered section having an inner passage with a radial dimension reduced toward a nozzle outlet port, and a needle having a needle tapered section disposed in the inner passage. The needle tapered section has a cross sectional area reduced toward a downstream end of the needle, and the downstream end of the needle is positioned at a downstream side with respect to the nozzle outlet port. In addition, the nozzle tapered section has a taper angle (?1) which is equal to or greater than a taper angle (?2) of the needle tapered section. Therefore, a boundary face on the outside of a nozzle jet flow becomes in a balanced natural shape, and is controlled in accordance with an operating condition. Thus, the ejector cycle can be operated while keeping high efficiency, regardless of the thermal load of the ejector cycle.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: February 26, 2008
    Assignees: Nippon Soken, Inc., DENSO Corporation
    Inventors: Yukikatsu Ozaki, Tadashi Hotta, Hirotsugu Takeuchi
  • Publication number: 20080041079
    Abstract: A refrigerant cycle device having an ejector includes a first evaporator for evaporating refrigerant flowing out of the ejector, a first passage portion for guiding refrigerant to a refrigerant suction port of the ejector, a throttle unit located in the first passage portion, a second evaporator located in the first passage portion downstream of the throttle unit, a bypass passage portion for guiding hot gas refrigerant from a compressor into the second evaporator, a bypass opening and closing unit provided in the bypass passage portion. Furthermore, a second passage portion is branched from the bypass passage portion downstream of the bypass opening and closing unit, and a flow control unit is provided in the second passage portion to prevent a flow of refrigerant from the first evaporator to the second evaporator through the second passage portion. Therefore, defrosting of both the first and second evaporators can be suitably performed.
    Type: Application
    Filed: June 21, 2007
    Publication date: February 21, 2008
    Applicant: DENSO Corporation
    Inventors: Haruyuki Nishijima, Etsuhisa Yamada, Hideya Matsui, Hirotsugu Takeuchi, Gentarou Oomura, Ryoko Fujiwara
  • Publication number: 20080034786
    Abstract: In a refrigerant cycle device, a radiator has a heat radiating portion for radiating high-pressure refrigerant discharged from a compressor and a refrigerant outlet downstream from the heat radiating portion, an ejector includes a nozzle portion for decompressing and expanding refrigerant and a refrigerant suction port for sucking refrigerant by high-velocity refrigerant flow jetted from the nozzle portion. The refrigerant cycle device includes a throttle unit for decompressing refrigerant flowing out of the refrigerant outlet of the radiator, an evaporator located between a refrigerant downstream side of the throttle unit and the refrigerant suction port of the ejector, and a branch portion located within the heat radiating portion of the radiator to branch a refrigerant flow. In the refrigerant cycle device, the nozzle portion has a nozzle inlet coupled to the branch portion so that refrigerant flows into the nozzle inlet from the branch portion of the radiator.
    Type: Application
    Filed: August 9, 2007
    Publication date: February 14, 2008
    Applicant: DENSO Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho
  • Patent number: 7320229
    Abstract: A branch passage, which is branched at a point on an upstream side of an ejector, is connected to a refrigerant suction inlet of the ejector. An evaporator is arranged in the branch passage, and a capillary tube is arranged on an upstream side of the evaporator.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: January 22, 2008
    Assignee: DENSO Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama
  • Publication number: 20080000263
    Abstract: A distributor able to evenly supply influent two-phase refrigerant flowing in by various flow states to different pipes with an extremely small pressure loss, that is, a distributor of a gas-liquid two-phase fluid distributing a gas-liquid two-phase fluid flowing in from an inlet pipe into a plurality of distribution pipes, provided with a cylindrical vessel with a cylindrical upper part, an inlet pipe connected in a tangential direction with respect to a circular cross section of the upper portion of the cylindrical vessel, and distribution pipes connected to a lower portion of the cylindrical vessel.
    Type: Application
    Filed: June 26, 2007
    Publication date: January 3, 2008
    Applicant: DENSO Corporation
    Inventors: Gentarou Oomura, Haruyuki Nishijima, Etsuhisa Yamada, Hirotsugu Takeuchi, Hideya Matsui, Ryoko Fujiwara