Patents by Inventor Hiroyuki Semba
Hiroyuki Semba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210292876Abstract: There is provided an austenitic heat resistant alloy including a chemical composition that contains, in mass percent: C: 0.04 to 0.18%, Si: 1.5% or less; Mn: 2.0% or less, P: 0.020% or less, S: 0.030% or less, Cu: 0.10% or less, Ni: 20.0 to 30.0%, Cr: 21.0 to 24.0%, Mo: 1.0 to 2.0%, Nb: 0.10 to 0.40%, Ti: 0.20% or less, Al: 0.05% or less, N: 0.10 to 0.35%, and B: 0.0015 to 0.005%, with the balance: Fe and impurities, the austenitic heat resistant alloy satisfying [P+6B?0.040].Type: ApplicationFiled: October 3, 2017Publication date: September 23, 2021Inventors: Shinnosuke Kurihara, Hiroyuki Semba, Hirokazu Okada, Junichi Higuchi, Katsuki Tanaka, Takahiro Osuki
-
Publication number: 20200325565Abstract: An austenitic heat-resistant steel weld metal with low high-temperature cracking susceptibility and good creep strength is provided. The austenitic heat-resistant steel weld metal has a chemical composition of, in mass %: 0.06% -0.14% C; 0.1%-0.6%Si; 0.1%-1.8%Mn; up to 0.025% P; up to 0.003% S; 25%-35% Ni; 20%-24% Cr; more than 4.5% and up to 7.5% W; 0.05%-0.5% Nb; 0.05%-0.4% V; 0.1%-0.35% N; up to 0.08% Al; up to 0.08% O; and 0.0005 to 0.005% B, fn1 expressed by the following Equation (1) being not less than 10: fn1=10(Nb+V)+1.5W+20N+1500B?25Si ??(1), where, for Nb, V, W, N, B and Si in Equation (1), the contents of the named elements in mass % are substituted.Type: ApplicationFiled: November 1, 2018Publication date: October 15, 2020Inventors: Shinnosuke KURIHARA, Hiroyuki HIRATA, Hiroyuki SEMBA, Kana JOTOKU
-
Publication number: 20200232081Abstract: Provided is an austenitic heat resistant alloy having a chemical composition consisting of, in mass %: C: 0.02 to 0.12%; Si: 2.0% or less; Mn: 3.0% or less; P: 0.030% or less; S: 0.015% or less; Cr: 20.0% or more and less than 28.0%; Ni: more than 35.0% and 55.0% or less; Co: 0 to 20.0%; W: 4.0 to 10.0%; Ti: 0.01 to 0.50%; Nb: 0.01 to 1.0%; Mo: less than 0.50%; Cu: less than 0.50%; Al: 0.30% or less; N: less than 0.10%; Mg: 0 to 0.05%; Ca: 0 to 0.05%; REM: 0 to 0.50%; V: 0 to 1.5%; B: 0 to 0.01%; Zr: 0 to 0.10%; Hf: 0 to 1.0%; Ta: 0 to 8.0%; Re: 0 to 8.0%; and the balance: Fe and impurities, wherein a shortest distance from a center portion to an outer surface portion of a cross section of the alloy is 40 mm or more, the cross section being perpendicular to a longitudinal direction of the alloy, an austenite grain size number at the outer surface portion is ?2.0 to 4.0, an amount of Cr which is present as a precipitate satisfies [CrPB/CrPS?10.0], and [YSS/YSB?1.5] and [TSS/TSB?1.Type: ApplicationFiled: February 9, 2017Publication date: July 23, 2020Inventors: Hiroyuki Semba, Hirokazu Okada, Mitsuru Yoshizawa, Toshihide Ono
-
Publication number: 20200010931Abstract: A Ni-based heat resistant alloy of the present invention contains predetermined amounts of C, Si, Mn, P, S, N, O, Ni, Co, Cr, Mo, W, B, Al, Ti, Nb, REM, Mg, Ca, and the balance of Fe and impurities, wherein [0.1?Mo+W?12.0], [1.0?4×Al+2×Ti+Nb?12.0], and [P+0.2×Cr×B<0.035] are satisfied, a shortest distance from a center portion to an outer surface portion of a cross section of an alloy member is 40 mm or more, the cross section being perpendicular to a longitudinal direction of the alloy member, an austenite grain size number at the outer surface portion is ?2.0 to 4.0, a total content of Al, Ti and Nb which are present as precipitates obtained by extraction residue analysis satisfies [(Al+Ti+Nb)PB/(Al+Ti+Nb)PS?10.0], and [YSS/YSB?1.5] and [TSS/TSB?1.2] are satisfied at a normal temperature.Type: ApplicationFiled: February 15, 2018Publication date: January 9, 2020Inventors: Hiroyuki Semba, Tomoaki Hamaguchi, Shinnosuke Kurihara
-
Patent number: 10519533Abstract: A high Cr austenitic stainless steel with a chemical composition consisting of in terms of % by mass, 0.03 to 0.12% of C, 0.10 to 1.00% of Si, 0.10 to 3.00% of Mn, 0.030% or less of P, 0.020% or less of S, 21.50 to 28.00% of Cr, more than 26.00 and not more than 35.00% of Ni, more than 2.00 and not more than 5.00% of W, 0.80% or less of Co, 0.01 to 0.70% of V, 0.15 to 1.00% of Nb, 0.001 to 0.040% of Al, 0.0001 to 0.0100% of B, 0.010 to 0.400% of N, 0.001 to 0.200% of Zr, 0.001 to 0.200% of Nd, 0.001 to 0.200% of Ta, 0.020 to 0.200% of Ta+0.8Nd+0.5Zr, 0.025% or less of Ti+Sn+Sb+Pb+As+Bi, 0.0090% or less of O, and a remainder consisting of Fe and impurities.Type: GrantFiled: June 3, 2016Date of Patent: December 31, 2019Assignee: NIPPON STEEL CORPORATIONInventors: Atsuro Iseda, Hiroyuki Semba, Hirokazu Okada, Hiroyuki Hirata, Toshihide Ono, Katsuki Tanaka, Tomoaki Hamaguchi, Kana Jotoku
-
Patent number: 10266909Abstract: There is provided an austenitic stainless steel for high-pressure hydrogen gas consisting, by mass percent, of C: 0.10% or less, Si: 1.0% or less, Mn: 3% or more to less than 7%, Cr: 15 to 30%, Ni: 10% or more to less than 17%, Al: 0.10% or less, N: 0.10 to 0.50%, and at least one kind of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%, the balance being Fe and impurities, wherein in the impurities, the P content is 0.050% or less and the S content is 0.050% or less, the tensile strength is 800 MPa or higher, the grain size number (ASTM E112) is No. 8 or higher, and alloy carbo-nitrides having a maximum diameter of 50 to 1000 nm are contained in the number of 0.4/?m2 or larger in cross section observation.Type: GrantFiled: March 19, 2012Date of Patent: April 23, 2019Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Tomohiko Omura, Jun Nakamura, Hirokazu Okada, Hiroyuki Semba, Yusaku Tomio, Hiroyuki Hirata, Masaaki Igarashi, Kazuhiro Ogawa, Masaaki Terunuma
-
Patent number: 10260125Abstract: There is provided an austenitic stainless steel for high-pressure hydrogen gas consisting, by mass percent, of C: 0.10% or less, Si: 1.0% or less, Mn: 3% or more to less than 7%, Cr: 15 to 30%, Ni: 10% or more to less than 17%, Al: 0.10% or less, N: 0.10 to 0.50%, and at least one kind of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%, the balance being Fe and impurities, wherein in the impurities, the P content is 0.050% or less and the S content is 0.050% or less, the tensile strength is 800 MPa or higher, the grain size number (ASTM E112) is No. 8 or higher, and alloy carbo-nitrides having a maximum diameter of 50 to 1000 nm are contained in the number of 0.4/?m2 or larger in cross section observation.Type: GrantFiled: June 28, 2016Date of Patent: April 16, 2019Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Tomohiko Omura, Jun Nakamura, Hirokazu Okada, Hiroyuki Semba, Yusaku Tomio, Hiroyuki Hirata, Masaaki Igarashi, Kazuhiro Ogawa, Masaaki Terunuma
-
Publication number: 20180216215Abstract: An austenitic heat-resistant alloy has a chemical composition of, in mass %: 0.04 to 0.14% C; 0.05 to 1% Si; 0.5 to 2.5% Mn; up to 0.03% P; less than 0.001% S; 23 to 32% Ni; 20 to 25% Cr 1 to 5% W; 0.1 to 0.6% Nb; 0.1 to 0.6% V; 0.1 to 0.3% N; 0.0005 to 0.01% B; 0.001 to 0.02% Sn; up to 0.03% AI; up to 0.02% 0; 0 to 0.5% Ti; 0 to 2% Co; 0 to 4% Cu; 0 to 4% Mo; 0 to 0.02% Ca; 0 to 0.02% Mg; 0 to 0.2% REM; and the balance being Fe and impurities. The alloy microstructure has a grain size number in accordance with ASTM E112 of 2.0 or more and less than 7.0.Type: ApplicationFiled: June 2, 2016Publication date: August 2, 2018Inventors: Hiroyuki HIRATA, Hiroyuki SEMBA, Kana JOTOKU, Atsuro ISEDA, Toshihide ONO, Katsuki TANAKA
-
Publication number: 20180142334Abstract: A high Cr austenitic stainless steel with a chemical composition consisting of in terms of % by mass, 0.03 to 0.12% of C, 0.10 to 1.00% of Si, 0.10 to 3.00% of Mn, 0.030% or less of P, 0.020% or less of S, 21.50 to 28.00% of Cr, more than 26.00 and not more than 35.00% of Ni, more than 2.00 and not more than 5.00% of W, 0.80% or less of Co, 0.01 to 0.70% of V, 0.15 to 1.00% of Nb, 0.001 to 0.040% of Al, 0.0001 to 0.0100% of B, 0.010 to 0.400% of N, 0.001 to 0.200% of Zr, 0.001 to 0.200% of Nd, 0.001 to 0.200% of Ta, 0.020 to 0.200% of Ta+0.8Nd+0.5Zr, 0.025% or less of Ti+Sn+Sb+Pb+As+Bi, 0.0090% or less of O, and a remainder consisting of Fe and impurities.Type: ApplicationFiled: June 3, 2016Publication date: May 24, 2018Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Atsuro ISEDA, Hiroyuki SEMBA, Hirokazu OKADA, Hiroyuki HIRATA, Toshihide ONO, Katsuki TANAKA, Tomoaki HAMAGUCHI, Kana JOTOKU
-
Patent number: 9932655Abstract: A Ni-based alloy includes, as a chemical composition, C, Si, Mn, Cr, Mo, Co, Al, Ti, B, P, S, and a balance consisting of Ni and impurities. The average grain size d is 10 ?m to 300 ?m, when the average grain size d is an average grain size in unit of ?m of a ? phase included in a metallographic structure of the Ni-based alloy. Precipitates with a major axis of 100 nm or more are absent in the metallographic structure. An area fraction ? is f2 or more, when the area fraction ? and the f2 are expressed by using the average grain size d and amounts in mass % of each element in the chemical composition.Type: GrantFiled: June 5, 2013Date of Patent: April 3, 2018Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Tomoaki Hamaguchi, Hiroyuki Semba, Hirokazu Okada
-
Publication number: 20170268085Abstract: An austenitic stainless steel with a chemical composition including in terms of mass %: 0.05 to 0.13% of C, 0.10 to 1.00% of Si, 0.10 to 3.00% of Mn, 0.040% or less of P, 0.020% or less of S, 17.00 to 19.00% of Cr, 12.00 to 15.00% of Ni, 2.00 to 4.00% of Cu, 0.01 to 2.00% of Mo, 2.00 to 5.00% of W, 2.50 to 5.00% of 2Mo+W, 0.01 to 0.40% of V, 0.05 to 0.50% of Ti, 0.15 to 0.70% of Nb, 0.001 to 0.040% of Al, 0.0010 to 0.0100% of B, 0.0010 to 0.0100% of N, 0.001 to 0.20% of Nd, 0.002% or less of Zr, 0.001% or less of Bi, 0.010% or less of Sn, 0.010% or less of Sb, 0.001% or less of Pb, 0.001% or less of As, 0.020% or less of Zr+Bi+Sn+Sb+Pb+As, 0.0090% or less of O, and a remainder including Fe and impurities.Type: ApplicationFiled: June 3, 2016Publication date: September 21, 2017Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Atsuro ISEDA, Hirokazu OKADA, Hiroyuki SEMBA, Hiroyuki HIRATA, Tomoaki HAMAGUCHI, Kana JOTOKU, Toshihide ONO, Katsuki TANAKA
-
Publication number: 20160304983Abstract: There is provided an austenitic stainless steel for high-pressure hydrogen gas consisting, by mass percent, of C: 0.10% or less, Si: 1.0% or less, Mn: 3% or more to less than 7%, Cr: 15 to 30%, Ni: 10% or more to less than 17%, Al: 0.10% or less, N: 0.10 to 0.50%, and at least one kind of V: 0.01 to 1.0% and Nb; 0.01 to 0.50%, the balance being Fe and impurities, wherein in the impurities, the P content is 0.050% or less and the S content is 0.050% or less, the tensile strength is 800 MPa or higher, the grain size number (ASTM E112) is No. 8 or higher, and alloy carbo-nitrides having a maximum diameter of 50 to 1000 nm are contained in the number of 0.4/?m2 or larger in cross section observation.Type: ApplicationFiled: June 28, 2016Publication date: October 20, 2016Inventors: Tomohiko OMURA, Jun Nakamura, Hirokazu Okada, Hiroyuki Semba, Yusaku Tomio, Hiroyuki Hirata, Masaaki Igarashi, Kazuhiro Ogawa, Masaaki Terunuma
-
Patent number: 9328403Abstract: A Ni-based heat resistant alloy as pipe, plate, rod, forgings and the like consists of C?0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 15% or more and less than 28%, Mo: 3 to 15%, Co: more than 5% and not more than 25%, Al: 0.2 to 2%, Ti: 0.2% to 3%, Nd: fn to 0.08%, and O?0.4Nd, further containing, as necessary, at least one kind of Nb, W, B, Zr, Hf, Mg, Ca, Y, La, Ce, Ta, Re and Fe of specific amounts, the balance being Ni and impurities, wherein, fn=1.7×10?5d+0.05{(Al/26.98)+(Ti/47.88)+(Nb/92.91)}. In the formula, d denotes an average grain size (?m), and each element symbol denotes the content (mass %) of that element. If the alloy contains W, Mo+(W/2)?15% holds. The alloy has improved ductility after long-term use at high temperatures, and cracking due to welding can be avoided.Type: GrantFiled: July 31, 2012Date of Patent: May 3, 2016Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Hiroyuki Semba, Hirokazu Okada, Hiroyuki Hirata, Mitsuru Yoshizawa, Atsuro Iseda
-
Publication number: 20150159241Abstract: A Ni-based alloy includes, as a chemical composition, C, Si, Mn, Cr, Mo, Co, Al, Ti, B, P, S, and a balance consisting of Ni and impurities. The average grain size d is 10 ?m to 300 ?m, when the average grain size d is an average grain size in unit of ?m of a ? phase included in a metallographic structure of the Ni-based alloy. Precipitates with a major axis of 100 nm or more are absent in the metallographic structure. An area fraction ? is f2 or more, when the area fraction ? and the f2 are expressed by using the average grain size d and amounts in mass% of each element in the chemical composition.Type: ApplicationFiled: June 5, 2013Publication date: June 11, 2015Inventors: Tomoaki Hamaguchi, Hiroyuki Semba, Hirokazu Okada
-
Publication number: 20140234155Abstract: A Ni-based heat resistant alloy as pipe, plate, rod, forgings and the like consists of C?0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 15% or more and less than 28%, Mo: 3 to 15%, Co: more than 5% and not more than 25%, Al: 0.2 to 2%, Ti: 0.2% to 3%, Nd: fn to 0.08%, and O?0.4Nd, further containing, as necessary, at least one kind of Nb, W, B, Zr, Hf, Mg, Ca, Y, La, Ce, Ta, Re and Fe of specific amounts, the balance being Ni and impurities, wherein, fn=1.7×10?5d+0.05{(Al/26.98)+(Ti/47.88)+(Nb/92.91)}. In the formula, d denotes an average grain size (?m), and each element symbol denotes the content (mass %) of that element. If the alloy contains W, Mo+(W/2)?15% holds. The alloy has improved ductility after long-term use at high temperatures, and cracking due to welding can be avoided.Type: ApplicationFiled: July 31, 2012Publication date: August 21, 2014Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Hiroyuki Semba, Hirokazu Okada, Hiroyuki Hirata, Mitsuru Yoshizawa, Atsuro Iseda
-
Patent number: 8808473Abstract: An austenitic heat resistant alloy includes, by mass percent, C: 0.15% or less, Si: 2% or less, Mn: 3% or less, Ni: 40 to 60%, Co: 10.14 to 25%, Cr: 15% or more and less than 28%, either one or both of Mo: 12% or less and W: less than 0.05%, the total content thereof being 0.1 to 12%, Nd: 0.001 to 0.1%, B: 0.0005 to 0.006%, N: 0.03% or less, O: 0.03% or less, at least one selected from Al: 1.36% or less, Ti: 3% or less, and Nb: 3% or less, and the balance being Fe and impurities. The contents of P and S in the impurities are P: 0.03% or less and S: 0.01% or less. The alloy satisfies 1?4×Al+2×Ti+Nb?12 and P+0.2×Cr×B?0.035, where an element in the Formulas represents the content by mass percent.Type: GrantFiled: May 16, 2012Date of Patent: August 19, 2014Assignee: Nippon Steel & Sumitomo Metal CorporationInventors: Hiroyuki Hirata, Hirokazu Okada, Hiroyuki Semba, Kazuhiro Ogawa, Atsuro Iseda, Mitsuru Yoshizawa
-
Patent number: 8801876Abstract: [Problem to be Solved] A Ni-based alloy product consisting of, by mass percent, C: 0.03 to 0.10%, Si: 0.05 to 1.0%, Mn: 0.1 to 1.5%, Sol.Al: 0.0005 to 0.04%, Fe: 20 to 30%, Cr: not less than 21.0% and less than 25.0%, W: exceeding 6.0% and not more than 9.0%, Ti: 0.05 to 0.2%, Nb: 0.05 to 0.35%, and B: 0.0005 to 0.006%, the balance being Ni and impurities, the impurities being P: 0.03% or less, S: 0.01% or less, N: less than 0.010%, Mo: less than 0.5%, and Co: 0.8% or less, wherein a value of effective B (Beff) defined by the formula, Beff (%)=B?(11/14)×N+(11/48)×Ti, is 0.0050 to 0.0300%, and the rupture elongation in a tensile test at 700° C. and at a strain rate of 10?6/sec is 20% or more. This alloy may contain one or more kinds of Cu, Ta, Zr, Mg, Ca, REM, and Pd.Type: GrantFiled: March 15, 2012Date of Patent: August 12, 2014Assignee: Nippon Steel & Sumitomo Metal CorporationInventors: Atsuro Iseda, Hiroyuki Hirata, Hirokazu Okada, Hiroyuki Semba
-
Patent number: 8801877Abstract: An austenitic heat resistant alloy, which comprises by mass percent, C: over 0.02 to 0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 28 to 38%, Ni: over 40 to 60%, Co?20% (including 0%), W over 3 to 15%, Ti: 0.05 to 1.0%, Zr: 0.005 to 0.2%, Al: 0.01 to 0.3%, N?0.02%, and Mo<0.5%, with the balance being Fe and impurities, in which the following formulas (1) to (3) are satisfied has high creep rupture strength and high toughness after a long period of use at a high temperature, and further it is excellent in hot workability. This austenitic heat resistant alloy may contain a specific amount of one or more elements selected from Nb, V, Hf, B, Mg, Ca, Y, La, Ce, Nd, Sc, Ta, Re, Ir, Pd, Pt and Ag. P?3/{200(Ti+8.5×Zr)} . . . (1), 1.35×Cr?Ni+Co?1.85×Cr . . . (2), Al?1.5×Zr . . . (3).Type: GrantFiled: June 3, 2013Date of Patent: August 12, 2014Assignee: Nippon Steel & Sumitomo Metal CorporationInventors: Hiroyuki Semba, Hirokazu Okada, Masaaki Igarashi
-
Patent number: 8696835Abstract: An austenitic stainless steel for use in a hydrogen gas atmosphere comprises, in mass %, C: 0.10% or less, Si: 1.0% or less, Mn: 0.01 to 30%, P: 0.040% or less, S: 0.01% or less, Cr: 15 to 30%, Ni: 5.0 to 30%, Al: 0.10% or less, N: 0.001 to 0.30% with the balance Fe and inevitable impurities. An X-ray (111) integration intensity of a cross section along the direction rectangular to the working direction is five times that in a random direction or less, and the X-ray integration intensity ratio of a cross section along the working direction satisfies I(220)/I(111)?10. The high strength steel can also contain one or more of the groups of Mo and W; V, Nb, Ta, Ti, Zr and Hf; B; Cu and Co; Mg, Ca, La, Ce, Y, Sm, Pr and Nd.Type: GrantFiled: November 24, 2010Date of Patent: April 15, 2014Assignee: Nippon Steel & Sumitomo Metal CorporationInventors: Hiroyuki Semba, Masaaki Igarashi, Tomohiko Omura, Mitsuo Miyahara, Kazuhiko Ogawa
-
Patent number: 8663400Abstract: Provided is a low alloy steel for high-pressure hydrogen gas environments, which contains, by mass percent, C: 0.15 to 0.60%, Si: 0.05 to 0.5%, Mn: 0.05 to 3.0%, P: not more than 0.025%, S: not more than 0.010%, Al: 0.005 to 0.10%, Mo: 0.5 to 3.0%, V: 0.05 to 0.30%, O (oxygen): not more than 0.01%, N: not more than 0.03%, and the balance Fe and impurities, and has tensile strength of not less than 900 MPa. This low alloy steel desirably contains B of 0.0003 to 0.003%, but in this case, N is limited to not more than 0.010%. It is desirable to contain at least one among Cr, Nb, Ti, Zr, and Ca. The contents of Mo and V desirably satisfy the following formula (1): [Mo(%)]·[V(%)]0.2?0.32??(1).Type: GrantFiled: June 12, 2009Date of Patent: March 4, 2014Assignee: Sumitomo Metal Industries, Ltd.Inventors: Tomohiko Omura, Mitsuo Miyahara, Hiroyuki Semba, Masaaki Igarashi