Patents by Inventor Hiroyuki Tokunaga

Hiroyuki Tokunaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8142629
    Abstract: A biosensor according to the present invention comprises a support 1, a conductive layer 2 composed of an electrical conductive material such as noble metal, for example gold, palladium or the like, and carbon, slits 3a and 3b parallel to the side of the support 1, slits 4a and 4b vertical to the side of the support 1, a working electrode 5, a counter electrode 6, a detecting electrode 7, a spacer 8 which covers the working electrode 5, the counter electrode 6 and the detecting electrode 7 on the support 1, a rectangular cutout part 9 forming a specimen supply path, an inlet 9a of the specimen supply path, a reagent layer 12 formed by applying a reagent including an enzyme or the like to the working electrode 5, the counter electrode 6 and the detecting electrode 7, which is exposed from the cutout part 9 of the spacer 8, and a cover 13 which covers the spacer 8, as shown in FIG. 1.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: March 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi, Yoshinobu Tokuno
  • Publication number: 20120043227
    Abstract: A method of measuring a quantity of a substrate contained in sample liquid is provided. This method can reduce measurement errors caused by a biosensor. The biosensor includes at least a pair of electrodes on an insulating board and is inserted into a measuring device which includes a supporting section for supporting detachably the biosensor, plural connecting terminals to be coupled to the respective electrodes, and a driving power supply which applies a voltage to the respective electrodes via the connecting terminals. One of the electrodes of the biosensor is connected to the first and second connecting terminals of the measuring device only when the biosensor is inserted into the measuring device in a given direction, and has a structure such that the electrode becomes conductive between the first and second connecting terminals due to a voltage application by the driving power supply.
    Type: Application
    Filed: October 25, 2011
    Publication date: February 23, 2012
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Yoshinobu Tokuno, Kazuhiro Matsumoto, Yasuhiko Sawada
  • Patent number: 8101063
    Abstract: A method of measuring a quantity of a substrate contained in sample liquid is provided. This method can reduce measurement errors caused by a biosensor. The biosensor includes at least a pair of electrodes on an insulating board and is inserted into a measuring device which includes a supporting section for supporting detachably the biosensor, plural connecting terminals to be coupled to the respective electrodes, and a driving power supply which applies a voltage to the respective electrodes via the connecting terminals. One of the electrodes of the biosensor is connected to the first and second connecting terminals of the measuring device only when the biosensor is inserted into the measuring device in a given direction, and has a structure such that the electrode becomes conductive between the first and second connecting terminals due to a voltage application by the driving power supply.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 24, 2012
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Yoshinobu Tokuno
  • Patent number: 8097147
    Abstract: A method of measuring a quantity of a substrate contained in sample liquid is provided. This method can reduce measurement errors caused by a biosensor. The biosensor includes at least a pair of electrodes on an insulating board and is inserted into a measuring device which includes a supporting section for supporting detachably the biosensor, plural connecting terminals to be coupled to the respective electrodes, and a driving power supply which applies a voltage to the respective electrodes via the connecting terminals. One of the electrodes of the biosensor is connected to the first and second connecting terminals of the measuring device only when the biosensor is inserted into the measuring device in a given direction, and has a structure such that the electrode becomes conductive between the first and second connecting terminals due to a voltage application by the driving power supply.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: January 17, 2012
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Yoshinobu Tokuno
  • Patent number: 8073592
    Abstract: A steering system includes: an electric power steering device which includes a steering unit of front wheels having an electric motor for generating an auxiliary torque in accordance with at least a steering torque and for transmitting the auxiliary torque to the steering unit; toe angle changers for changing toe angles of rear wheels in accordance with at least a front wheel turning angle and a vehicle speed; and a steering controller for controlling the electric power steering device and the toe angle changer. The steering system further includes a toe angle changer anomaly detection unit and/or an electric power steering device anomaly detection unit, and when a toe angle changer abnormal state is detected, an auxiliary torque target value and/or a viscosity in the electric power steering device is controlled, and when an electric power steering device abnormal state is detected, the toe angle changer is controlled.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: December 6, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takashi Nishimori, Hiroyuki Tokunaga, Masaya Yamada
  • Publication number: 20110278167
    Abstract: A biosensor according to the present invention comprises a support 1, a conductive layer 2 composed of an electrical conductive material such as noble metal, for example gold, palladium or the like, and carbon, slits 3a and 3b parallel to the side of the support 1, slits 4a and 4b vertical to the side of the support 1, a working electrode 5, a counter electrode 6, a detecting electrode 7, a spacer 8 which covers the working electrode 5, the counter electrode 6 and the detecting electrode 7 on the support 1, a rectangular cutout part 9 forming a specimen supply path, an inlet 9a of the specimen supply path, a reagent layer 12 formed by applying a reagent including an enzyme or the like to the working electrode 5, the counter electrode 6 and the detecting electrode 7, which is exposed from the cutout part 9 of the spacer 8, and a cover 13 which covers the spacer 8, as shown in FIG. 1.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 17, 2011
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi, Yoshinobu Tokuno
  • Publication number: 20110272296
    Abstract: A biosensor according to the present invention comprises a support 1, a conductive layer 2 composed of an electrical conductive material such as noble metal, for example gold, palladium or the like, and carbon, slits 3a and 3b parallel to the side of the support 1, slits 4a and 4b vertical to the side of the support 1, a working electrode 5, a counter electrode 6, a detecting electrode 7, a spacer 8 which covers the working electrode 5, the counter electrode 6 and the detecting electrode 7 on the support 1, a rectangular cutout part 9 forming a specimen supply path, an inlet 9a of the specimen supply path, a reagent layer 12 formed by applying a reagent including an enzyme or the like to the working electrode 5, the counter electrode 6 and the detecting electrode 7, which is exposed from the cutout part 9 of the spacer 8, and a cover 13 which covers the spacer 8, as shown in FIG. 1.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 10, 2011
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi, Yoshinobu Tokuno
  • Patent number: 8038860
    Abstract: A biosensor can supply a sample solution accurately and easily, and includes a capillary for collecting a sample solution and analyzes a specific substance in the sample solution, an air hole, and at least two supply ports, i.e., a sample supply port and an auxiliary sample supply port, so that supply of the sample solution can be performed from either of the supply ports. Even when the sample supply port is closed up with a fingertip or the like and supply of the sample solution is stopped, the sample solution can be quickly supplied from the other auxiliary sample supply port.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 18, 2011
    Assignee: Panasonic Corporation
    Inventors: Eriko Yamanishi, Hiroyuki Tokunaga, Akihisa Higashihara
  • Patent number: 8025780
    Abstract: A biosensor is disclosed comprising a support; a conductive layer composed of an electrical conductive material such as noble metal, for example gold or palladium, and carbon; slits parallel to and perpendicular to the side of the support; working, counter, and detecting electrodes; a spacer which covers the working, counter, and detecting electrodes on the support; a rectangular cutout in the spacer forming a specimen supply path; an inlet to the specimen supply path; a reagent layer formed by applying a reagent containing an enzyme to the working, counter, and detecting electrodes, which are exposed through the cutout in the spacer; and a cover over the spacer. The biosensor can be formed by a simple method, and provides a uniform reagent layer on the electrodes regardless of the reagent composition.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: September 27, 2011
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi, Yoshinobu Tokuno
  • Patent number: 8007645
    Abstract: A biosensor can supply a sample solution accurately and easily, and includes a capillary for collecting a sample solution and analyzes a specific substance in the sample solution, an air hole, and at least two supply ports, i.e., a sample supply port and an auxiliary sample supply port, so that supply of the sample solution can be performed from either of the supply ports. Even when the sample supply port is closed up with a fingertip or the like and supply of the sample solution is stopped, the sample solution can be quickly supplied from the other auxiliary sample supply port.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: August 30, 2011
    Assignee: Panasonic Corporation
    Inventors: Eriko Yamanishi, Hiroyuki Tokunaga, Akihisa Higashihara
  • Patent number: 7998325
    Abstract: A biosensor is disclosed comprising a support; a conductive layer composed of an electrical conductive material such as a noble metal, for example gold or palladium, and carbon; slits parallel to and perpendicular to the side of the support; working, counter, and detecting electrodes; a spacer which covers the working, counter, and detecting electrodes on the support; a rectangular cutout in the spacer forming a specimen supply path; an inlet to the specimen supply path; a reagent layer formed by applying a reagent containing an enzyme to the working, counter, and detecting electrodes, which are exposed through the cutout in the spacer; and a cover over the spacer. The biosensor can be formed by a simple method, and provides a uniform reagent layer on the electrodes regardless of the reagent composition.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: August 16, 2011
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi, Yoshinobu Tokuno
  • Publication number: 20110180404
    Abstract: In a biosensor for measuring a specific substance in a liquid sample, one or a combination of sugar alcohol, metallic salt, organic acid or organic acid salt which has at least one carboxyl group in a molecule, and organic acid or organic acid salt which has at least one carboxyl group and one amino group in a molecule, is included in a reagent layer provided on electrodes, thereby providing a highly-accurate biosensor which is excellent in stability and has high response (sensitivity, linearity) of the sensor to the substrate concentration.
    Type: Application
    Filed: December 21, 2010
    Publication date: July 28, 2011
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Takahiro Nakaminami, Junko Nakayama, Eriko Yamanishi
  • Publication number: 20110174613
    Abstract: A biosensor is disclosed comprising a support; a conductive layer composed of an electrical conductive material such as a noble metal, for example gold or palladium, and carbon; slits parallel to and perpendicular to the side of the support; working, counter, and detecting electrodes; a spacer which covers the working, counter, and detecting electrodes on the support; a rectangular cutout in the spacer forming a specimen supply path; an inlet to the specimen supply path; a reagent layer formed by applying a reagent containing an enzyme to the working, counter, and detecting electrodes, which are exposed through the cutout in the spacer; and a cover over the spacer. The biosensor can be formed by a simple method, and provides a uniform reagent layer on the electrodes regardless of the reagent composition.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 21, 2011
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi, Yoshinobu Tokuno
  • Publication number: 20110147234
    Abstract: A biosensor according to the present invention comprises a support 1, a conductive layer 2 composed of an electrical conductive material such as noble metal, for example gold, palladium or the like, and carbon, slits 3a and 3b parallel to the side of the support 1, slits 4a and 4b vertical to the side of the support 1, a working electrode 5, a counter electrode 6, a detecting electrode 7, a spacer 8 which covers the working electrode 5, the counter electrode 6 and the detecting electrode 7 on the support 1, a rectangular cutout part 9 forming a specimen supply path, an inlet 9a of the specimen supply path, a reagent layer 12 formed by applying a reagent including an enzyme or the like to the working electrode 5, the counter electrode 6 and the detecting electrode 7, which is exposed from the cutout part 9 of the spacer 8, and a cover 13 which covers the spacer 8, as shown in FIG. 1.
    Type: Application
    Filed: January 20, 2011
    Publication date: June 23, 2011
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi, Yoshinobu Tokuno
  • Patent number: 7963640
    Abstract: A liquid discharge head according to the present invention comprises plural pressure chambers for applying pressure to liquid, which respectively communicate with liquid discharge openings for discharging liquid; and plural piezoelectric elements, arranged respectively corresponding to the plural pressure chambers, which respectively include lower electrodes, piezoelectric layers and upper electrodes layered in order from the pressure chambers, the lower electrodes being extended to areas corresponding to areas between the plural pressure chambers, and wherein an insulating layer is provided so as to cover at least all the lower electrodes located in the areas corresponding to areas between the plural pressure chambers.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: June 21, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroyuki Tokunaga, Koichiro Nakanishi
  • Publication number: 20110132777
    Abstract: A method of measuring a quantity of a substrate contained in sample liquid is provided. This method can reduce measurement errors caused by a biosensor. The biosensor includes at least a pair of electrodes on an insulating board and is inserted into a measuring device which includes a supporting section for supporting detachably the biosensor, plural connecting terminals to be coupled to the respective electrodes, and a driving power supply which applies a voltage to the respective electrodes via the connecting terminals. One of the electrodes of the biosensor is connected to the first and second connecting terminals of the measuring device only when the biosensor is inserted into the measuring device in a given direction, and has a structure such that the electrode becomes conductive between the first and second connecting terminals due to a voltage application by the driving power supply.
    Type: Application
    Filed: January 31, 2011
    Publication date: June 9, 2011
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Yoshinobu Tokuno, Kazuhiro Matsumoto, Yasuhiko Sawada
  • Publication number: 20110132776
    Abstract: A method of measuring a quantity of a substrate contained in sample liquid is provided. This method can reduce measurement errors caused by a biosensor. The biosensor includes at least a pair of electrodes on an insulating board and is inserted into a measuring device which includes a supporting section for supporting detachably the biosensor, plural connecting terminals to be coupled to the respective electrodes, and a driving power supply which applies a voltage to the respective electrodes via the connecting terminals. One of the electrodes of the biosensor is connected to the first and second connecting terminals of the measuring device only when the biosensor is inserted into the measuring device in a given direction, and has a structure such that the electrode becomes conductive between the first and second connecting terminals due to a voltage application by the driving power supply.
    Type: Application
    Filed: January 28, 2011
    Publication date: June 9, 2011
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Yoshinobu Tokuno
  • Publication number: 20110117269
    Abstract: A biosensor is disclosed comprising a support; a conductive layer composed of an electrical conductive material such as a noble metal, for example gold or palladium, and carbon; slits parallel to and perpendicular to the side of the support; working, counter, and detecting electrodes; a spacer which covers the working, counter, and detecting electrodes on the support; a rectangular cutout in the spacer forming a specimen supply path; an inlet to the specimen supply path; a reagent layer formed by applying a reagent containing an enzyme to the working, counter, and detecting electrodes, which are exposed through the cutout in the spacer; and a cover over the spacer. The biosensor can be formed by a simple method, and provides a uniform reagent layer on the electrodes regardless of the reagent composition.
    Type: Application
    Filed: January 20, 2011
    Publication date: May 19, 2011
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi, Yoshinobu Tokuno
  • Patent number: 7913804
    Abstract: In an electric power steering system for a vehicle that controls a force that urges a steering wheel toward a neutral position thereof, a control unit (21) for the system is configured such that an electric motor (9) for providing an assisting force produces a relatively large returning force when a rotational direction of a steering wheel (2) agrees with a direction of the steering torque applied to the road wheel (7), and a relatively small returning force when a rotational direction of the steering wheel disagrees from a direction of the steering torque applied to the road wheel. Thereby, the effort required for a vehicle operator to steer the vehicle is reduced and the steering feel can be thereby and otherwise improved while providing a favorable returning force that urges a steering wheel toward a neutral position.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: March 29, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shigeki Ehara, Hiroyuki Tokunaga
  • Publication number: 20110036713
    Abstract: A biosensor can supply a sample solution accurately and easily, and includes a capillary for collecting a sample solution and analyzes a specific substance in the sample solution, an air hole, and at least two supply ports, i.e., a sample supply port and an auxiliary sample supply port, so that supply of the sample solution can be performed from either of the supply ports. Even when the sample supply port is closed up with a fingertip or the like and supply of the sample solution is stopped, the sample solution can be quickly supplied from the other auxiliary sample supply port.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 17, 2011
    Inventors: Eriko Yamanishi, Hiroyuki Tokunaga, Akihisa Higashihara