Patents by Inventor Hiroyuki Toya

Hiroyuki Toya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10669646
    Abstract: Provided are nickel manganese composite hydroxide particles having a small and uniform particle size and having a double structure which enables to obtain a cathode active material having a hollow structure, and a manufacturing method thereof. When obtaining the nickel manganese composite hydroxide by a reaction crystallization, using an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel, a metallic compound that contains manganese and an ammonium ion donor and controlling the pH value that is measured at a standard solution temperature of 25° C. is 10.5 to 12.0, nucleation is performed in an oxidizing atmosphere in which the oxygen concentration is greater than 1% by volume, and then nuclei are grown by switching the atmosphere from the oxidizing atmosphere to a mixed atmosphere of oxygen and inert gas in which the oxygen concentration is 1% by volume or less.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: June 2, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroyuki Toya, Kensaku Mori, Shin Imaizumi, Kenji Ikeuchi, Toshiyuki Osako
  • Patent number: 10629891
    Abstract: A non-aqueous electrolyte secondary battery is provided that has both good safety and durability characteristics while at the same time has high charge/discharge capacity. The cathode active material for a non-aqueous electrolyte secondary battery of the present invention is a lithium nickel composite oxide to which at least two or more kinds of metal elements including aluminum are added, and comprises secondary particles that are composed of fine secondary particles having an average particle size of 2 ?m to 4 ?m, and rough secondary particles having an average particle size of 6 ?m to 15 ?m, with an overall average particle size of 5 ?m to 15 ?m; where the aluminum content of fine secondary particles (metal mole ratio: SA) is greater than the aluminum content of rough secondary particles (metal mole ratio: LA), and preferably the aluminum concentration ratio (SA/LA) is within the range 1.2 to 2.6.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 21, 2020
    Assignees: SUMITOMO METAL MINING CO., LTD., Toyota Jidosha Kabushiki Kaisha
    Inventors: Syuhei Oda, Hiroyuki Toya, Katsuya Kase, Yutaka Oyama
  • Patent number: 10615012
    Abstract: A sputtering apparatus includes a shutter unit, a plurality of target holders, and a substrate holder which can rotate about an axis perpendicular to a surface on which a substrate is held. The shutter unit includes a first shutter having first and second apertures and a second shutter having third and fourth apertures. The plurality of target holders are arranged on a first virtual circle centered on the axis, with the arrangement intervals between the plurality of target holders on the first virtual circle including at least two types of arrangement intervals.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 7, 2020
    Assignee: CANON ANELVA CORPORATION
    Inventors: Shigenori Ishihara, Hiroyuki Toya, Yasushi Yasumatsu, Toshikazu Nakazawa, Eiji Nakamura, Shintaro Suda, Shin Imai, Yuu Fujimoto
  • Patent number: 10601036
    Abstract: Provided is a precursor of a positive electrode active material containing, in a reduced amount, impurities which do not contribute to a charge/discharge reaction but rather corrode a firing furnace and peripheral equipment and thus having excellent battery characteristics and safety, and production method thereof. A method for producing a precursor of a positive electrode active material for nonaqueous electrolyte secondary batteries having a hollow structure or porous structure includes obtaining the precursor by washing nickel-manganese composite hydroxide particles having a particular composition ratio and a pore structure in which pores are present within the particles with an aqueous carbonate solution having a carbonate concentration of 0.1 mol/L or more.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: March 24, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Taira Aida, Hiroyuki Toya
  • Publication number: 20200044250
    Abstract: An object of the present invention is to provide nickel cobalt manganese composite hydroxide particles having a small particle diameter and a uniform particle size distribution, and a method for producing the same. A method for producing a nickel cobalt manganese composite hydroxide by a crystallization reaction is provided. The method includes: a nucleation step of performing nucleation by controlling a pH of an aqueous solution for nucleation including metal compounds containing nickel, cobalt and manganese, and an ammonium ion donor to 12.0 to 14.0 in teams of the pH as measured at a liquid temperature of 25° C. as a standard; and a particle growth step of growing nuclei by controlling a pH of an aqueous solution for particle growth containing nuclei formed in the nucleation step to 10.5 to 12.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard.
    Type: Application
    Filed: October 3, 2019
    Publication date: February 6, 2020
    Applicants: SUMITOMO METAL MINING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki TOYA, Shin IMAIZUMI, Kensaku MORI, Atsushi FUKUI, Kenji IKEUCHI, Kazuomi RYOSHI, Toshiyuki OSAKO, Hiroki NAGAI
  • Publication number: 20200006770
    Abstract: Provided is a cathode active material that can simultaneously improve the capacity characteristics, output characteristics, and cycling characteristics of a rechargeable battery when used as cathode material for a non-aqueous electrolyte rechargeable battery. After performing nucleation by controlling an aqueous solution for nucleation that includes a metal compound that includes at least a transition metal and an ammonium ion donor so that the pH value becomes 12.0 to 14.0 (nucleation process), nuclei are caused to grow by controlling aqueous solution for particle growth that includes the nuclei so that the pH value is less than in the nucleation process and is 10.5 to 12.0 (particle growth process).
    Type: Application
    Filed: August 13, 2019
    Publication date: January 2, 2020
    Inventors: Yasutaka KAMATA, Taira AIDA, Hiroyuki TOYA
  • Patent number: 10516165
    Abstract: An object of the present invention is to provide nickel cobalt manganese composite hydroxide particles having a small particle diameter and a uniform particle size distribution, and a method for producing the same. A method for producing a nickel cobalt manganese composite hydroxide by a crystallization reaction is provided. The method includes: a nucleation step of performing nucleation by controlling a pH of an aqueous solution for nucleation including metal compounds containing nickel, cobalt and manganese, and an ammonium ion donor to 12.0 to 14.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard; and a particle growth step of growing nuclei by controlling a pH of an aqueous solution for particle growth containing nuclei formed in the nucleation step to 10.5 to 12.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: December 24, 2019
    Assignees: SUMITOMO METAL MINING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Toya, Shin Imaizumi, Kensaku Mori, Atsushi Fukui, Kenji Ikeuchi, Kazuomi Ryoshi, Toshiyuki Osako, Hiroki Nagai
  • Patent number: 10490815
    Abstract: An object of the present invention is to provide nickel cobalt manganese composite hydroxide particles having a small particle diameter and a uniform particle size distribution, and a method for producing the same. [Solution] A method for producing a nickel cobalt manganese composite hydroxide by a crystallization reaction is provided. The method includes: a nucleation step of performing nucleation by controlling a pH of an aqueous solution for nucleation including metal compounds containing nickel, cobalt and manganese, and an ammonium ion donor to 12.0 to 14.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard; and a particle growth step of growing nuclei by controlling a pH of an aqueous solution for particle growth containing nuclei formed in the nucleation step to 10.5 to 12.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: November 26, 2019
    Assignees: SUMITOMO METAL MINING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Toya, Shin Imaizumi, Kensaku Mori, Atsushi Fukui, Kenji Ikeuchi, Kazuomi Ryoshi, Toshiyuki Osako, Hiroki Nagai
  • Patent number: 10483539
    Abstract: A positive electrode active material for a non-aqueous electrolyte secondary battery, which enables a non-aqueous electrolyte secondary battery to achieve great battery characteristics, and a process for producing the material, as well as a non-aqueous electrolyte secondary batter.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: November 19, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Katsuya Inoue, Hiroyuki Toya
  • Publication number: 20190341610
    Abstract: Provided is a precursor of a positive electrode active material containing, in a reduced amount, impurities which do not contribute to a charge/discharge reaction but rather corrode a firing furnace and peripheral equipment and thus having excellent battery characteristics and safety, and production method thereof. A method for producing a precursor of a positive electrode active material for nonaqueous electrolyte secondary batteries having a hollow structure or porous structure includes obtaining the precursor by washing nickel-manganese composite hydroxide particles having a particular composition ratio and a pore structure in which pores are present within the particles with an aqueous carbonate solution having a carbonate concentration of 0.1 mol/L or more.
    Type: Application
    Filed: July 12, 2019
    Publication date: November 7, 2019
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Taira Aida, Hiroyuki Toya
  • Patent number: 10424787
    Abstract: Provided is a cathode active material that can simultaneously improve the capacity characteristics, output characteristics, and cycling characteristics of a rechargeable battery when used as cathode material for a non-aqueous electrolyte rechargeable battery. After performing nucleation by controlling an aqueous solution for nucleation that includes a metal compound that includes at least a transition metal and an ammonium ion donor so that the pH value becomes 12.0 to 14.0 (nucleation process), nuclei are caused to grow by controlling aqueous solution for particle growth that includes the nuclei so that the pH value is less than in the nucleation process and is 10.5 to 12.0 (particle growth process).
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: September 24, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yasutaka Kamata, Taira Aida, Hiroyuki Toya
  • Patent number: 10396356
    Abstract: Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: August 27, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD
    Inventors: Hiroyuki Toya, Kazuomi Ryoshi, Toshiyuki Osako
  • Patent number: 10236504
    Abstract: Achieved is a nickel-cobalt-manganese composite hydroxide which is excellent in reactivity with a lithium compound, and able to achieve a positive electrode active material which has excellent thermal stability and battery characteristics. The nickel-cobalt-manganese composite hydroxide is intended to serve as a precursor for a positive electrode active material of a non-aqueous electrolyte secondary battery, and represented by a general formula: Ni1-x-y-zCoxMnyMz(OH)2 (0<x??, 0<y??, 0?z?0.1, M represents one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, and W), and the nickel-cobalt-manganese composite hydroxide has a specific surface area of 3.0 to 11.0 m2/g as measured by a BET method through nitrogen adsorption, and an average valence of 2.4 or more for Co and Mn as obtained by redox titration.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: March 19, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yasutaka Kamata, Hiroyuki Toya
  • Patent number: 10236506
    Abstract: A tranition metal composite hydroxide can be used as a precursor to allow a lithium transition metal composite oxide having a small and highly uniform particle diameter to be obtained. A method also is provided for producing a transition metal composite hydroxide represented by a general formula (1) MxWsAt(OH)2+?, coated with a compound containing the additive element, and serving as a precursor of a positive electrode active material for nonaqueous electrolyte secondary batteries. The method includes producing a composite hydroxide particle, forming nuclei, growing a formed nucleus; and forming a coating material containing a metal oxide or hydroxide on the surfaces of composite hydroxide particles obtained through the upstream step.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: March 19, 2019
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiroyuki Toya, Atsushi Fukui
  • Publication number: 20180347069
    Abstract: Provided are nickel manganese composite hydroxide particles having a small and uniform particle size and having a double structure which enables to obtain a cathode active material having a hollow structure, and a manufacturing method thereof. When obtaining the nickel manganese composite hydroxide by a reaction crystallization, using an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel, a metallic compound that contains manganese and an ammonium ion donor and controlling the pH value that is measured at a standard solution temperature of 25° C. is 10.5 to 12.0, nucleation is performed in an oxidizing atmosphere in which the oxygen concentration is greater than 1% by volume, and then nuclei are grown by switching the atmosphere from the oxidizing atmosphere to a mixed atmosphere of oxygen and inert gas in which the oxygen concentration is 1% by volume or less.
    Type: Application
    Filed: May 24, 2018
    Publication date: December 6, 2018
    Applicant: SUMITO METAL MINING CO., LTD.
    Inventors: Hiroyuki TOYA, Kensaku MORI, Shin IMAIZUMI, Kenji IKEUCHI, Toshiyuki OSAKO
  • Patent number: 10128501
    Abstract: Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: November 13, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Atsushi Fukui, Katsuya Inoue, Shuhei Oda, Hiroyuki Toya
  • Publication number: 20180261440
    Abstract: A sputtering apparatus includes a shutter unit, a plurality of target holders, and a substrate holder which can rotate about an axis perpendicular to a surface on which a substrate is held. The shutter unit includes a first shutter having first and second apertures and a second shutter having third and fourth apertures. The plurality of target holders are arranged on a first virtual circle centered on the axis, with the arrangement intervals between the plurality of target holders on the first virtual circle including at least two types of arrangement intervals.
    Type: Application
    Filed: May 11, 2018
    Publication date: September 13, 2018
    Applicant: CANON ANELVA CORPORATION
    Inventors: Shigenori Ishihara, Hiroyuki Toya, Yasushi Yasumatsu, Toshikazu Nakazawa, Eiji Nakamura, Shintaro Suda, Shin Imai, Yuu Fujimoto
  • Publication number: 20180254481
    Abstract: Provided is a cathode active material that can simultaneously improve the capacity characteristics, output characteristics, and cycling characteristics of a rechargeable battery when used as cathode material for a non-aqueous electrolyte rechargeable battery. After performing nucleation by controlling an aqueous solution for nucleation that includes a metal compound that includes at least a transition metal and an ammonium ion donor so that the pH value becomes 12.0 to 14.0 (nucleation process), nuclei are caused to grow by controlling aqueous solution for particle growth that includes the nuclei so that the pH value is less than in the nucleation process and is 10.5 to 12.0 (particle growth process).
    Type: Application
    Filed: May 12, 2014
    Publication date: September 6, 2018
    Inventors: Yasutaka KAMATA, Taira AIDA, Hiroyuki TOYA
  • Patent number: 10062551
    Abstract: A sputtering apparatus includes a chamber, a substrate holder, first to fourth target holders, a shutter unit, and a gate valve through which the substrate is conveyed. The first to fourth target holders are arranged on vertices of a virtual rectangle having long sides and short sides and inscribed in a virtual circle centered on the axis, the first target holder and the second target holder are respectively arranged on two vertices defining one short side of the virtual rectangle, and a distance to the gate valve is shorter than distances from the third target holder and the fourth target holder to the gate valve.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: August 28, 2018
    Assignee: CANON ANELVA CORPORATION
    Inventors: Shigenori Ishihara, Kazuya Konaga, Hiroyuki Toya, Shintaro Suda, Yasushi Yasumatsu, Yuu Fujimoto, Toshikazu Nakazawa, Eiji Nakamura, Shin Imai
  • Patent number: D839160
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: January 29, 2019
    Assignee: Subaru Corporation
    Inventors: Mondo Kasano, Hiroyuki Toya