Patents by Inventor Hisashi Yamazaki

Hisashi Yamazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220321091
    Abstract: An acoustic wave device includes a support, a piezoelectric layer on the support, a functional electrode at the piezoelectric layer, a frame-shaped support frame on the piezoelectric layer and surrounding the functional electrode in plan view in a stacking direction of the support and the piezoelectric layer, and a lid covering an opening of the support frame, wherein the support includes a first cavity overlapping at least a portion of the functional electrode in the plan view, a second cavity defined by the piezoelectric layer, the support frame, and the lid between the piezoelectric layer and the lid, the piezoelectric layer includes a through hole communicating with the first and second cavities, and a gas is provided in the first and second cavities.
    Type: Application
    Filed: March 29, 2022
    Publication date: October 6, 2022
    Inventors: Hisashi YAMAZAKI, Seiji KAI, Takeshi NAKAO
  • Publication number: 20220321097
    Abstract: An acoustic wave device includes a support including a support substrate, a piezoelectric layer on the support, a functional electrode at the piezoelectric layer, a frame-shaped support frame on the piezoelectric layer and surrounding the functional electrode in a plan view in a stacking direction of the support and the piezoelectric layer, and a lid covering an opening of the support frame, wherein the support includes a first cavity at a position overlapping at least a portion of the functional electrode in the plan view, a second cavity defined by the piezoelectric layer, the support frame, and the lid between the piezoelectric layer and the lid, the piezoelectric layer includes a through hole communicating with the first and second cavities, and the first and second cavities are under vacuum.
    Type: Application
    Filed: March 29, 2022
    Publication date: October 6, 2022
    Inventors: Hisashi YAMAZAKI, Seiji KAI, Takeshi NAKAO
  • Patent number: 10659002
    Abstract: An elastic wave device includes a lamination layer film including a piezoelectric thin film on a support substrate. The lamination layer film is not partially present in a region located in an outer side portion of a region where IDT electrodes are provided. A first insulation layer extends from at least a portion of a region where the lamination layer film is not present to an upper portion of the piezoelectric thin film. A wiring electrode has a width of about 6 ?m and extends from the upper portion of the piezoelectric thin film to an upper portion of the first insulation layer, and extends onto a section of the first insulation layer in the region.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: May 19, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Koji Yamamoto, Tsutomu Takai, Seiji Kai, Hisashi Yamazaki, Yuji Miwa, Takashi Yamane, Noriyoshi Ota, Atsushi Tanaka
  • Patent number: 10659001
    Abstract: An elastic wave device includes a lamination layer film including a piezoelectric thin film on a support substrate. The lamination layer film is not partially present in a region located in an outer side portion of a region where IDT electrodes are provided. A first insulation layer extends from at least a portion of a region where the lamination layer film is not present to an upper portion of the piezoelectric thin film. A wiring electrode extends from the upper portion of the piezoelectric thin film to an upper portion of the first insulation layer, and extends onto a section of the first insulation layer in the region.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: May 19, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Koji Yamamoto, Tsutomu Takai, Seiji Kai, Hisashi Yamazaki, Yuji Miwa, Takashi Yamane
  • Patent number: 10320362
    Abstract: An elastic wave device includes a multilayer film provided on a support substrate and including a piezoelectric thin film and a layer other than the piezoelectric thin film, an interdigital transducer electrode provided on one surface of the piezoelectric thin film, and an external connection terminal electrically connected to the interdigital transducer electrode. In a plan view, the multilayer film is partially absent or omitted in a region outside a region where the interdigital transducer electrode is provided, and the elastic wave device further includes a first insulating layer provided on the support substrate in at least a portion of a region where the multilayer film is absent or omitted.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: June 11, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Taku Kikuchi, Shin Saijo, Hisashi Yamazaki, Masahiro Fukushima, Yuji Miwa
  • Patent number: 10250220
    Abstract: An elastic wave device includes a piezoelectric substrate, an IDT electrode, wiring, a pad, an under bump metal, a first dielectric layer, and a second dielectric layer. At least a portion of the IDT electrode includes a first electrically conductive film, at least a portion of the wiring includes a multilayer body including the first electrically conductive film and a second electrically conductive film, and at least a portion of the pad includes the second electrically conductive film. The second dielectric layer covers the region other than the contact region between the second electrically conductive film and the under bump metal. Consequently, the second electrically conductive film is covered with the second dielectric layer and the under bump metal and is not exposed to air.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: April 2, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yuji Miwa, Hijiri Sumii, Junpei Yasuda, Taku Kikuchi, Hisashi Yamazaki
  • Patent number: 10243536
    Abstract: In an elastic wave device, a multilayer film including a piezoelectric thin film is provided on a support substrate, an interdigital transducer electrode is provided on one surface of the piezoelectric thin film, a wiring electrode is connected to the interdigital transducer electrode, the wiring electrode includes a lead electrode portion and a pad electrode portion, an external connection terminal is located above the pad electrode portion, the external connection terminal is electrically connected to the pad electrode portion, and the external connection terminal is bonded onto the pad electrode portion on the support substrate so that at least the piezoelectric thin film of the multilayer film is not present below the pad electrode portion.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: March 26, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shin Saijo, Hisashi Yamazaki, Koji Yamamoto, Seiji Kai, Munehisa Watanabe
  • Publication number: 20180358950
    Abstract: An elastic wave device includes a lamination layer film including a piezoelectric thin film on a support substrate. The lamination layer film is not partially present in a region located in an outer side portion of a region where IDT electrodes are provided. A first insulation layer extends from at least a portion of a region where the lamination layer film is not present to an upper portion of the piezoelectric thin film. A wiring electrode has a width of about 6 ?m and extends from the upper portion of the piezoelectric thin film to an upper portion of the first insulation layer, and extends onto a section of the first insulation layer in the region.
    Type: Application
    Filed: August 22, 2018
    Publication date: December 13, 2018
    Inventors: Koji YAMAMOTO, Tsutomu TAKAI, Seiji KAI, Hisashi YAMAZAKI, Yuji MIWA, Takashi YAMANE, Noriyoshi OTA, Atsushi TANAKA
  • Publication number: 20180097502
    Abstract: An elastic wave device includes a lamination layer film including a piezoelectric thin film on a support substrate. The lamination layer film is not partially present in a region located in an outer side portion of a region where IDT electrodes are provided. A first insulation layer extends from at least a portion of a region where the lamination layer film is not present to an upper portion of the piezoelectric thin film. A wiring electrode extends from the upper portion of the piezoelectric thin film to an upper portion of the first insulation layer, and extends onto a section of the first insulation layer in the region.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 5, 2018
    Inventors: Koji Yamamoto, Tsutomu Takai, Seiji Kai, Hisashi Yamazaki, Yuji Miwa, Takashi Yamane
  • Publication number: 20160294354
    Abstract: In an elastic wave device, a multilayer film including a piezoelectric thin film is provided on a support substrate, an interdigital transducer electrode is provided on one surface of the piezoelectric thin film, a wiring electrode is connected to the interdigital transducer electrode, the wiring electrode includes a lead electrode portion and a pad electrode portion, an external connection terminal is located above the pad electrode portion, the external connection terminal is electrically connected to the pad electrode portion, and the external connection terminal is bonded onto the pad electrode portion on the support substrate so that at least the piezoelectric thin film of the multilayer film is not present below the pad electrode portion.
    Type: Application
    Filed: June 13, 2016
    Publication date: October 6, 2016
    Inventors: Shin SAIJO, Hisashi YAMAZAKI, Koji YAMAMOTO, Seiji KAI, Munehisa WATANABE
  • Publication number: 20160277003
    Abstract: An elastic wave device includes a multilayer film provided on a support substrate and including a piezoelectric thin film and a layer other than the piezoelectric thin film, an interdigital transducer electrode provided on one surface of the piezoelectric thin film, and an external connection terminal electrically connected to the interdigital transducer electrode. In a plan view, the multilayer film is partially absent or omitted in a region outside a region where the interdigital transducer electrode is provided, and the elastic wave device further includes a first insulating layer provided on the support substrate in at least a portion of a region where the multilayer film is absent or omitted.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 22, 2016
    Inventors: Taku KIKUCHI, Shin SAIJO, Hisashi YAMAZAKI, Masahiro FUKUSHIMA, Yuji MIWA
  • Publication number: 20160156331
    Abstract: An elastic wave device includes a piezoelectric substrate, an IDT electrode, wiring, a pad, an under bump metal, a first dielectric layer, and a second dielectric layer. At least a portion of the IDT electrode includes a first electrically conductive film, at least a portion of the wiring includes a multilayer body including the first electrically conductive film and a second electrically conductive film, and at least a portion of the pad includes the second electrically conductive film. The second dielectric layer covers the region other than the contact region between the second electrically conductive film and the under bump metal. Consequently, the second electrically conductive film is covered with the second dielectric layer and the under bump metal and is not exposed to air.
    Type: Application
    Filed: February 3, 2016
    Publication date: June 2, 2016
    Inventors: Yuji MIWA, Hijiri SUMII, Junpei YASUDA, Taku KIKUCHI, Hisashi YAMAZAKI
  • Patent number: 9271400
    Abstract: An electronic component includes a frame-shaped supporting body including a heat-curable resin and surrounding a functional unit on one main surface of a substrate and so as to be separated from a periphery of the substrate on an inner side and in which a lid member is fixed to the supporting body such that an opening of the frame-shaped supporting body is sealed. The frame-shaped supporting body includes a frame-shaped supporting body main body, a first protrusion that protrudes toward an inside from the supporting body main body and a second protrusion that protrudes toward an outside from the supporting body main body at a portion where the supporting body main body and the first protrusion are continuous with each other.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: February 23, 2016
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Seiji Kai, Shintaro Nakatani, Mitsuyoshi Hira, Takao Mukai, Hisashi Yamazaki
  • Patent number: 9184367
    Abstract: An elastic wave device includes a piezoelectric substrate and an interdigital transducer electrode. The piezoelectric substrate includes a principal surface with a groove tapered in lateral cross section. The interdigital transducer electrode is arranged on the principal surface such that at least one portion thereof is located in the groove. The interdigital transducer electrode is a laminate including a first conductive layer, a second conductive layer, and a diffusion-preventing layer located between the first conductive layer and the second conductive layer and made of an oxide or nitride of Ti or Cr.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 10, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenji Sakaguchi, Shin Saijo, Hisashi Yamazaki
  • Patent number: 9130539
    Abstract: An elastic wave device includes a first elastic wave element, a second elastic wave element, and a first substrate. The first elastic wave element includes a first piezoelectric substrate. The second elastic wave element includes a second piezoelectric substrate. The second piezoelectric substrate is stacked on the first piezoelectric substrate. A coefficient of linear expansion of the second piezoelectric substrate is greater than a coefficient of linear expansion of the first piezoelectric substrate. The first substrate is bonded to the second piezoelectric substrate. A coefficient of linear expansion of the first substrate is lower than the coefficient of linear expansion of the second piezoelectric substrate.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: September 8, 2015
    Assignee: Murata Manufacturing Co. Ltd.
    Inventors: Taku Kikuchi, Hisashi Yamazaki
  • Publication number: 20150109071
    Abstract: An elastic wave device includes a first elastic wave element, a second elastic wave element, and a first substrate. The first elastic wave element includes a first piezoelectric substrate. The second elastic wave element includes a second piezoelectric substrate. The second piezoelectric substrate is stacked on the first piezoelectric substrate. A coefficient of linear expansion of the second piezoelectric substrate is greater than a coefficient of linear expansion of the first piezoelectric substrate. The first substrate is bonded to the second piezoelectric substrate. A coefficient of linear expansion of the first substrate is lower than the coefficient of linear expansion of the second piezoelectric substrate.
    Type: Application
    Filed: January 5, 2015
    Publication date: April 23, 2015
    Inventors: Taku KIKUCHI, Hisashi YAMAZAKI
  • Patent number: 8997320
    Abstract: Provided is a method for manufacturing an acoustic wave device that has an excellent temperature coefficient of frequency (TCF) and high accuracy of IDT pattern forming and is capable of resisting high temperature processing of 200 degrees or more. The method for manufacturing an acoustic wave device according to the present invention includes forming an IDT (2) on a principal surface (1a) of a piezoelectric substrate (1), and forming a film by thermal spraying a material (3) having a smaller linear thermal expansion coefficient than the piezoelectric substrate onto an opposite principal surface (1b) of the piezoelectric substrate (1) where the IDT (2) is formed.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: April 7, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toshiyuki Fuyutsume, Taro Nishino, Hisashi Yamazaki, Noboru Tamura, Nakaba Ichikawa, Masaki Aruga
  • Publication number: 20140003017
    Abstract: An electronic component includes a frame-shaped supporting body including a heat-curable resin and surrounding a functional unit on one main surface of a substrate and so as to be separated from a periphery of the substrate on an inner side and in which a lid member is fixed to the supporting body such that an opening of the frame-shaped supporting body is sealed. The frame-shaped supporting body includes a frame-shaped supporting body main body, a first protrusion that protrudes toward an inside from the supporting body main body and a second protrusion that protrudes toward an outside from the supporting body main body at a portion where the supporting body main body and the first protrusion are continuous with each other.
    Type: Application
    Filed: September 3, 2013
    Publication date: January 2, 2014
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Seiji KAI, Shintaro NAKATANI, Mitsuyoshi HIRA, Takao MUKAI, Hisashi YAMAZAKI
  • Patent number: 8575818
    Abstract: A surface acoustic wave element has a small energy loss and when it is used in a filter device, suppresses a spurious component occurring near the resonant frequency of a principal response and improves the frequency characteristic near the pass band of the filter device. The surface acoustic wave element includes a piezoelectric substrate, a comb-shaped electrode, and an insulating film. The comb-shaped electrode is disposed on the piezoelectric substrate. The insulating film is disposed so as to cover the piezoelectric substrate and the comb-shaped electrode. Where ? is the wavelength of an elastic wave that propagates in the piezoelectric substrate and h is the difference between the maximum and minimum values of a thickness dimension from the top surface of the piezoelectric substrate to the top surface of the insulating film, 0.01?h/??0.03 is satisfied.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: November 5, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hisashi Yamazaki, Hideaki Takahashi, Taku Kikuchi
  • Patent number: 8319394
    Abstract: Provided are an acoustic wave device and a method for manufacturing the same, the acoustic wave device being effectively prevented from expanding and contracting due to temperature change and having a small frequency shift. The acoustic wave device of the present invention has a piezoelectric substrate (1) having an IDT (2) formed on one principal surface of the piezoelectric substrate (1), and a thermal spray film (3) formed on an opposite principal surface (1b) of the piezoelectric substrate (1), the thermal spray film being of a material having a smaller linear thermal expansion coefficient than the piezoelectric substrate (1) and having grain boundaries and pores (4), at least a part of which is filled with a filling material (5).
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: November 27, 2012
    Assignees: Murata Manufacturing Co., Ltd., Koike Co., Ltd.
    Inventors: Toshiyuki Fuyutsume, Taro Nishino, Hisashi Yamazaki, Kiyoto Araki, Noboru Tamura, Nakaba Ichikawa, Masaki Aruga