Patents by Inventor Hisataka Fujimaki

Hisataka Fujimaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150255833
    Abstract: Provided are a secondary battery having a configuration with which localized metal contaminant precipitation at the negative electrode can be reliably inhibited in less time, and a method for producing a secondary battery that allows reliable deactivation of metal contaminant in less time. The battery comprises a positive electrode, a negative electrode, and a separator placed between the two electrodes. The separator has an air resistance Rp?100 sec in an in-plane direction vertical to its thickness direction and an air resistance Rt>Rp in the thickness direction. The method comprises a minimal charging step where the cell is charged to 0.01% to 0.5% capacity over at least one hour to obtain a state of charge where the positive and negative electrode potentials are at or above the oxidation and reduction potentials of a probable metal contaminant, respectively; and a step of performing initial conditioning charging.
    Type: Application
    Filed: October 2, 2013
    Publication date: September 10, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hisataka Fujimaki, Hiroshi Kawadu
  • Publication number: 20150064566
    Abstract: Provided is a method for manufacturing a lithium secondary battery which is capable of preventing a local deposition of a metallic foreign substance at a negative electrode regardless of the type of a positive electrode and in which a short-circuit is less likely to occur. The present manufacturing method comprises: a step of assembling a cell that includes a positive electrode, a negative electrode, and a nonaqueous electrolyte; a micro charging step of performing a micro charge on the assembled cell before performing an initial conditioning charge until a positive electrode potential with respect to a metal lithium (Li) reference electrode exceeds an Me dissolution potential set in advance at which a mixing-anticipated metal species (Me) starts to dissolve; and an Me dissolution potential holding step of holding the positive electrode potential of the cell at or above the Me dissolution potential for a prescribed period of time after the micro charge.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 5, 2015
    Inventors: Hisataka Fujimaki, Shinya Kamada, Shinya Kuroki, Hideto Mori, Hisanao Kojima
  • Publication number: 20150037669
    Abstract: Provided is a method for producing a lithium secondary battery in which localized precipitation of a foreign metal in the negative electrode can be reliably suppressed in a shorter time, regardless of, for instance, electrode type or electrode variability. The production method is a method for producing a secondary battery that includes a positive electrode provided with a positive electrode active material layer, a negative electrode provided with a negative electrode active material layer, and a nonaqueous electrolyte. The method comprises a step of constructing a cell including the positive electrode, the negative electrode and the nonaqueous electrolyte; a micro-charging step of performing charging over one hour or longer, up to 0.01% to 0.
    Type: Application
    Filed: February 16, 2012
    Publication date: February 5, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hisataka Fujimaki, Hiroshi Kawadu, Shinya Kamada, Hisanao Kojima
  • Publication number: 20130328566
    Abstract: A method of testing a secondary battery includes first to fourth steps. At the first step, the secondary battery after manufacture is charged to a first voltage. At the second step, a second voltage lower than the first voltage is set as a target voltage and discharge or charge is performed in a constant-current constant-voltage mode before the secondary battery is left standing. At the third step, the open circuit voltage of the secondary battery is measured before and after the secondary battery is left standing. At the fourth step, it is determined whether the secondary battery is a conforming item or not based on the difference in the open circuit voltage before and after the secondary battery is left standing.
    Type: Application
    Filed: March 2, 2011
    Publication date: December 12, 2013
    Inventors: Katsuyuki Hojo, Hisanao Kojima, Hiroaki Ikeda, Hisataka Fujimaki
  • Publication number: 20130255075
    Abstract: Provided is a method for producing a lithium secondary cell with which the concentrated precipitation of metal impurities at the negative electrode is inhibited and short circuiting is unlikely to occur. The production method includes, assembling together the positive electrode, the separator, and the negative electrode, and then impregnating the assembly with the nonaqueous electrolyte; charging the assembly within 1 min so that a maximum achieved potential of the positive electrode becomes 3.2 V or more with respect to the redox potential of lithium; allowing the assembly to stand for 10 min or less after the charging has ended; and discharging the assembly within 1 min after the standing step.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 3, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hisataka Fujimaki, Katsuyuki Hojo, Tomotaka Hagino, HIroyuki Kawaki, Shinya Kamada, Hisanao Kojima
  • Patent number: 7977656
    Abstract: A charged particle beam irradiation system includes an accelerator for accelerating a charged particle beam, a beam irradiation apparatus having a beam energy modulator and arranged for irradiating an object with the charged particle beam extracted from the accelerator and having passed the beam energy modulator, which is rotated and whose thickness in the axial direction differs in the rotational direction, and a controller for controlling the extraction intensity of the charged particle beam extracted from the accelerator, while the charged particle beam is being extracted, on the basis of the rotational angle of the beam energy modulator.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: July 12, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hisataka Fujimaki, Satoshi Totake
  • Patent number: 7838855
    Abstract: A charged particle irradiation system that positions the beam at a target position to avoid irradiation of normal tissue includes an acceleration system 6 for extracting a charged particle beam, scanning magnets 24 and 25, and charged particle beam position monitors 26 and 27. On the basis of signals received from the charged particle beam position monitors 26 and 27, the control unit 70 calculates a beam position at a target position and then controls the scanning magnets 24 and 25 so that the charged particle beam is moved to a desired irradiation position at the target position. The control unit 70 corrects the value of an excitation current applied to each of the scanning magnets 24 and 25 on a specified cycle basis on the basis of information about the position and the angle of the charged particle beam.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: November 23, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Yusuke Fujii, Hisataka Fujimaki, Kazuo Hiramoto
  • Patent number: 7692168
    Abstract: The present invention improves the accuracy of therapy by checking in real time whether an spread-out Bragg peak (SOBP) width agrees with a desired width during irradiation with a beam. The device for outputting a charged particle beam includes a charged particle beam generator 1 including a synchrotron 4; a range modulation device such as a range modulation wheel (RMW) 28 which forms a Bragg peak of an ion beam extracted from this charged particle beam generator 1; an irradiation device 16 which is located in the direction of ion beam propagation of this RMW device 28 and includes a dose monitor 31 for detecting a dose of the ion beam; and an SOBP width calculation device 73 which calculates ion beam Bragg peak formed by the RMW device 28 based on a detection value of the dose monitor 31.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: April 6, 2010
    Assignees: Hitachi, Ltd., Hitachi Information & Control Solutions, Ltd.
    Inventors: Kunio Moriyama, Noriaki Ouchi, Masahiro Tadokoro, Hisataka Fujimaki
  • Patent number: 7589334
    Abstract: The invention is intended to increase the number of patients treatable using one wheel having a thickness varied in the rotating direction to change energy of an ion beam passing the wheel. Ion beam delivery equipment for irradiating an ion beam to a patient for treatment comprises a beam generator for producing and accelerating the ion beam, an beam delivery nozzle including a range modulation wheel which has a predetermined thickness distribution in the rotating direction and is rotated on a travel passage of the ion beam generated from the beam generator to control a range of the ion beam, and an irradiation controller for controlling the beam producing and accelerating operation of the beam generator in accordance with the phase of rotation of the range modulation wheel.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: September 15, 2009
    Assignees: Hitachi, Ltd., Board of Regents, University of Texas System
    Inventors: Kazuo Hiramoto, Hiroshi Akiyama, Masaki Yanagisawa, Hisataka Fujimaki, Alfred Smith, Wayne Newhauser
  • Patent number: 7576342
    Abstract: The invention is intended to increase the number of patients treatable using one wheel having a thickness varied in the rotating direction to change energy of an ion beam passing the wheel. Ion beam delivery equipment for irradiating an ion beam to a patient for treatment comprises a beam generator for producing and accelerating the ion beam, an beam delivery nozzle including a range modulation wheel which has a predetermined thickness distribution in the rotating direction and is rotated on a travel passage of the ion beam generated from the beam generator to control a range of the ion beam, and an irradiation controller for controlling the beam producing and accelerating operation of the beam generator in accordance with the phase of rotation of the range modulation wheel.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: August 18, 2009
    Assignees: Hitachi, Ltd., Board of Regents, University of Texas System
    Inventors: Kazuo Hiramoto, Hiroshi Akiyama, Masaki Yanagisawa, Hisataka Fujimaki, Alfred P. Smith, Wayne Newhauser
  • Publication number: 20090039256
    Abstract: A charged particle irradiation system that positions the beam at a target position to avoid irradiation of normal tissue includes an acceleration system 6 for extracting a charged particle beam, scanning magnets 24 and 25, and charged particle beam position monitors 26 and 27. On the basis of signals received from the charged particle beam position monitors 26 and 27, the control unit 70 calculates a beam position at a target position and then controls the scanning magnets 24 and 25 so that the charged particle beam is moved to a desired irradiation position at the target position. The control unit 70 corrects the value of an excitation current applied to each of the scanning magnets 24 and 25 on a specified cycle basis on the basis of information about the position and the angle of the charged particle beam.
    Type: Application
    Filed: June 18, 2008
    Publication date: February 12, 2009
    Inventors: Yusuke FUJII, Hisataka Fujimaki, Kazuo Hiramoto
  • Publication number: 20090008575
    Abstract: A particle irradiation apparatus and a particle beam irradiation method that controls the energy and irradiation dose of a particle beam to form a high dose region having a high uniformity of depth-directional spread (Spread Out Bracici Peak, referred to as SOBP). A SOBP having a steep falling edge of the dose distribution on the deep side from the body surface is formed based on a method of superimposing SOBPs each having a small dose distribution width to form a desired SOBP. An energy-spread-device forms a first SOBP having a small dose distribution width; and an energy spread device 2 forms a second SOBP having a small dose distribution width and a steep falling edge of the dose distribution at the deepest portion from the body surface. The thus formed SOBPs are superimposed to form a SOBP having a length suitable for the target region.
    Type: Application
    Filed: May 13, 2008
    Publication date: January 8, 2009
    Inventors: Takashi OKAZAKI, Hisataka Fujimaki, Shinichiro Fujitaka, Rintaro Fujimoto, Yusuke Fujii, Kazuo Hiramoto
  • Patent number: 7449701
    Abstract: Particle beam irradiation equipment and a method of adjusting irradiation nozzle, which can ensure a long range and high dose uniformity at any field size are provided. The particle beam irradiation equipment comprises charged particle beam generation equipment and an irradiation nozzle for irradiating a charged particle beam extracted from the charged particle beam generation equipment to an irradiation target. The irradiation nozzle comprises a first scatterer device including a first scatterer for spreading out the charged particle beam into a Gaussian-like distribution, and multiple stages of second scatterer devices including second scatterers for producing a uniform intensity distribution of the charged particle beam having been spread out into a Gaussian-like distribution by the first scatterer.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: November 11, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Hisataka Fujimaki, Koji Matsuda, Masaki Yanagisawa, Hiroshi Akiyama
  • Patent number: 7394082
    Abstract: The invention is intended to confirm whether the SOBP (spread-out Bragg peak) width is a desired value in real time during beam irradiation, and to improve safety in treatment. Ion beam delivery equipment comprises a beam generator including a synchrotron, an RMW (range modulation wheel) device for forming an SOBP width of an ion beam extracted from the beam generator, a beam delivery nozzle including a reference dose monitor and a main dose monitor which are installed respectively upstream and downstream of the RMW device in the direction of travel of the ion beam, and an SOBP width computing unit for computing the SOBP width of the ion beam, which is formed by the RMW device, based on values detected by both the reference dose monitor and the main dose monitor.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: July 1, 2008
    Assignees: Hitachi, Ltd., Board of Regents, The University of Texas System
    Inventors: Hisataka Fujimaki, Koji Matsuda, Hiroshi Akiyama, Masaki Yanagisawa, Alfred R. Smith, Kazuo Hiramoto
  • Patent number: 7355189
    Abstract: The invention provides a charged particle therapy system capable of increasing the number of patients treated. An irradiation filed forming apparatus for irradiating a charged particle beam extracted from a charged particle beam generator to an irradiation target includes an RMW device. The RMW device comprises a housing and an RMW disposed within the housing. A rotary shaft of the RMW is rotatably mounted to the housing. The RMW device is detachably installed in an RMW holding member providied in a casing of the irradiation filed forming apparatus. The housing can be placed in contact with the RMW holding member, and hence positioning of the rotary shaft of the RMW to a predetermined position can be performed in a short time. This contributed to cutting a time required for treatment per patient and increasing the number of patients treated.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: April 8, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20080067452
    Abstract: The present invention improves the accuracy of therapy by checking in real time whether an spread-out Bragg peak (SOBP) width agrees with a desired width during irradiation with a beam. The device for outputting a charged particle beam includes a charged particle beam generator 1 including a synchrotron 4; a range modulation device such as a range modulation wheel (RMW) 28 which forms a Bragg peak of an ion beam extracted from this charged particle beam generator 1; an irradiation device 16 which is located in the direction of ion beam propagation of this RMW device 28 and includes a dose monitor 31 for detecting a dose of the ion beam; and an SOBP width calculation device 73 which calculates ion beam Bragg peak formed by the RMW device 28 based on a detection value of the dose monitor 31.
    Type: Application
    Filed: July 6, 2007
    Publication date: March 20, 2008
    Inventors: Kunio MORIYAMA, Noriaki Ouchi, Masahiro Tadokoro, Hisataka Fujimaki
  • Patent number: 7297967
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: November 20, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20070252093
    Abstract: The invention is intended to confirm whether the SOBP (spread-out Bragg peak) width is a desired value in real time during beam irradiation, and to improve safety in treatment. Ion beam delivery equipment comprises a beam generator including a synchrotron, an RMW (range modulation wheel) device for forming an SOBP width of an ion beam extracted from the beam generator, a beam delivery nozzle including a reference dose monitor and a main dose monitor which are installed respectively upstream and downstream of the RMW device in the direction of travel of the ion beam, and an SOBP width computing unit for computing the SOBP width of the ion beam, which is formed by the RMW device, based on values detected by both the reference dose monitor and the main dose monitor.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 1, 2007
    Inventors: Hisataka Fujimaki, Koji Matsuda, Hiroshi Akiyama, Masaki Yanagisawa, Alfred Smith, Kazuo Hiramoto
  • Publication number: 20070228291
    Abstract: The invention is intended to increase the number of patients treatable using one wheel having a thickness varied in the rotating direction to change energy of an ion beam passing the wheel. Ion beam delivery equipment for irradiating an ion beam to a patient for treatment comprises a beam generator for producing and accelerating the ion beam, an beam delivery nozzle including a range modulation wheel which has a predetermined thickness distribution in the rotating direction and is rotated on a travel passage of the ion beam generated from the beam generator to control a range of the ion beam, and an irradiation controller for controlling the beam producing and accelerating operation of the beam generator in accordance with the phase of rotation of the range modulation wheel.
    Type: Application
    Filed: June 6, 2007
    Publication date: October 4, 2007
    Inventors: Kazuo Hiramoto, Hiroshi Akiyama, Masaki Yanagisawa, Hisataka Fujimaki, Alfred Smith, Wayne Newhauser
  • Publication number: 20070158592
    Abstract: The invention is intended to increase the number of patients treatable using one wheel having a thickness varied in the rotating direction to change energy of an ion beam passing the wheel. Ion beam delivery equipment for irradiating an ion beam to a patient for treatment comprises a beam generator for producing and accelerating the ion beam, an beam delivery nozzle including a range modulation wheel which has a predetermined thickness distribution in the rotating direction and is rotated on a travel passage of the ion beam generated from the beam generator to control a range of the ion beam, and an irradiation controller for controlling the beam producing and accelerating operation of the beam generator in accordance with the phase of rotation of the range modulation wheel.
    Type: Application
    Filed: March 6, 2007
    Publication date: July 12, 2007
    Inventors: Kazuo Hiramoto, Hiroshi Akiyama, Masaki Yanagisawa, Hisataka Fujimaki, Alfred Smith, Wayne Newhauser