Patents by Inventor Hisataka Fujimaki

Hisataka Fujimaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070051905
    Abstract: A charged particle beam irradiation system includes an accelerator for accelerating a charged particle beam, a beam irradiation apparatus having a beam energy modulator and arranged for irradiating an object with the charged particle beam extracted from the accelerator and having passed the beam energy modulator, which is rotated and whose thickness in the axial direction differs in the rotational direction, and a controller for controlling the extraction intensity of the charged particle beam extracted from the accelerator, while the charged particle beam is being extracted, on the basis of the rotational angle of the beam energy modulator.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 8, 2007
    Inventors: Hisataka Fujimaki, Satoshi Totake
  • Patent number: 7154107
    Abstract: A particle therapy system, as one example of a particle beam irradiation system, comprises a charged particle beam generator and an irradiation field forming apparatus. An ion beam from the charged particle beam generator is irradiated to a diseased part in the body of a patient through the irradiation field forming apparatus. A scattering compensator and a range modulation wheel (RMW) are disposed on the upstream side in a direction of beam advance and are movable along a beam axis. The movement of the scattering compensator and the RMW adjusts a size of the ion beam entering a scatterer device, whereby a change in scattering intensity of the ion beam in the scatterer device is adjusted. As a result, a penumbra in dose distribution is reduced and a more uniform dose distribution in a direction perpendicular to the direction of beam advance is obtained in the diseased part.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: December 26, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20060192146
    Abstract: The invention provides a charged particle therapy system capable of increasing the number of patients treated. An irradiation filed forming apparatus for irradiating a charged particle beam extracted from a charged particle beam generator to an irradiation target includes an RMW device. The RMW device comprises a housing and an RMW disposed within the housing. A rotary shaft of the RMW is rotatably mounted to the housing. The RMW device is detachably installed in an RMW holding member providied in a casing of the irradiation filed forming apparatus. The housing can be placed in contact with the RMW holding member, and hence positioning of the rotary shaft of the RMW to a predetermined position can be performed in a short time. This contributed to cutting a time required for treatment per patient and increasing the number of patients treated.
    Type: Application
    Filed: April 7, 2006
    Publication date: August 31, 2006
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20060163496
    Abstract: The invention is intended to increase the number of patients treatable using one wheel having a thickness varied in the rotating direction to change energy of an ion beam passing the wheel. Ion beam delivery equipment for irradiating an ion beam to a patient for treatment comprises a beam generator for producing and accelerating the ion beam, an beam delivery nozzle including a range modulation wheel which has a predetermined thickness distribution in the rotating direction and is rotated on a travel passage of the ion beam generated from the beam generator to control a range of the ion beam, and an irradiation controller for controlling the beam producing and accelerating operation of the beam generator in accordance with the phase of rotation of the range modulation wheel.
    Type: Application
    Filed: January 24, 2005
    Publication date: July 27, 2006
    Inventors: Kazuo Hiramoto, Hiroshi Akiyama, Masaki Yanagisawa, Hisataka Fujimaki, Alfred Smith, Wayne Newhauser
  • Patent number: 7071479
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: July 4, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Patent number: 7053389
    Abstract: The invention provides a charged particle therapy system capable of increasing the number of patients treated. An irradiation filed forming apparatus for irradiating a charged particle beam extracted from a charged particle beam generator to an irradiation target includes an RMW device. The RMW device comprises a housing and an RMW disposed within the housing. A rotary shaft of the RMW is rotatably mounted to the housing. The RMW device is detachably installed in an RMW holding member provided in a casing of the irradiation filed forming apparatus. The housing can be placed in contact with the RMW holding member, and hence positioning of the rotary shaft of the RMW to a predetermined position can be performed in a short time. This contributes to cutting a time required for treatment per patient and increasing the number of patients treated.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: May 30, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Patent number: 7049613
    Abstract: A particle therapy system, as one example of a particle beam irradiation system, comprises a charged particle beam generator and an irradiation field forming apparatus. An ion beam from the charged particle beam generator is irradiated to a diseased part in the body of a patient through the irradiation field forming apparatus. A scattering compensator and a range modulation wheel (RMW) are disposed on the upstream side in a direction of beam advance and are movable along a beam axis. The movement of the scattering compensator and the RMW adjusts a size of the ion beam entering a scatterer device, whereby a change in scattering intensity of the ion beam in the scatterer device is adjusted. As a result, a penumbra in dose distribution is reduced and a more uniform dose distribution in a direction perpendicular to the direction of beam advance is obtained in the diseased part.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: May 23, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20060097204
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Application
    Filed: December 14, 2005
    Publication date: May 11, 2006
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Patent number: 7026636
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: April 11, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20050167616
    Abstract: A particle therapy system, as one example of a particle beam irradiation system, comprises a charged particle beam generator and an irradiation field forming apparatus. An ion beam from the charged particle beam generator is irradiated to a diseased part in the body of a patient through the irradiation field forming apparatus. A scattering compensator and a range modulation wheel (RMW) are disposed on the upstream side in a direction of beam advance and are movable along a beam axis. The movement of the scattering compensator and the RMW adjusts a size of the ion beam entering a scatterer device, whereby a change in scattering intensity of the ion beam in the scatterer device is adjusted. As a result, a penumbra in dose distribution is reduced and a more uniform dose distribution in a direction perpendicular to the direction of beam advance is obtained in the diseased part.
    Type: Application
    Filed: March 28, 2005
    Publication date: August 4, 2005
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20050145804
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Application
    Filed: February 8, 2005
    Publication date: July 7, 2005
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20050127306
    Abstract: A particle therapy system, as one example of a particle beam irradiation system, comprises a charged particle beam generator and an irradiation field forming apparatus. An ion beam from the charged particle beam generator is irradiated to a diseased part in the body of a patient through the irradiation field forming apparatus. A scattering compensator and a range modulation wheel (RMW) are disposed on the upstream side in a direction of beam advance and are movable along a beam axis. The movement of the scattering compensator and the RMW adjusts a size of the ion beam entering a scatterer device, whereby a change in scattering intensity of the ion beam in the scatterer device is adjusted. As a result, a penumbra in dose distribution is reduced and a more uniform dose distribution in a direction perpendicular to the direction of beam advance is obtained in the diseased part.
    Type: Application
    Filed: December 8, 2004
    Publication date: June 16, 2005
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20050051740
    Abstract: The invention provides a charged particle therapy system capable of increasing the number of patients treated. An irradiation filed forming apparatus for irradiating a charged particle beam extracted from a charged particle beam generator to an irradiation target includes an RMW device. The RMW device comprises a housing and an RMW disposed within the housing. A rotary shaft of the RMW is rotatably mounted to the housing. The RMW device is detachably installed in an RMW holding member provided in a casing of the irradiation filed forming apparatus. The housing can be placed in contact with the RMW holding member, and hence positioning of the rotary shaft of the RMW to a predetermined position can be performed in a short time. This contributes to cutting a time required for treatment per patient and increasing the number of patients treated.
    Type: Application
    Filed: August 13, 2004
    Publication date: March 10, 2005
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20040200983
    Abstract: Particle beam irradiation equipment and a method of adjusting irradiation nozzle, which can ensure a long range and high dose uniformity at any field size are provided. The particle beam irradiation equipment comprises charged particle beam generation equipment and an irradiation nozzle for irradiating a charged particle beam extracted from the charged particle beam generation equipment to an irradiation target. The irradiation nozzle comprises a first scatterer device including a first scatterer for spreading out the charged particle beam into a Gaussian-like distribution, and multiple stages of second scatterer devices including second scatterers for producing a uniform intensity distribution of the charged particle beam having been spread out into a Gaussian-like distribution by the first scatterer.
    Type: Application
    Filed: April 13, 2004
    Publication date: October 14, 2004
    Inventors: Hisataka Fujimaki, Koji Matsuda, Masaki Yanagisawa, Hiroshi Akiyama
  • Patent number: 6777700
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: August 17, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20040149934
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Application
    Filed: January 21, 2004
    Publication date: August 5, 2004
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20040056212
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Application
    Filed: September 29, 2003
    Publication date: March 25, 2004
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20040000650
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Application
    Filed: June 6, 2003
    Publication date: January 1, 2004
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki