Patents by Inventor Hitoshi Kubota

Hitoshi Kubota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8158640
    Abstract: A novel compound of the formula (I): wherein R1 is alkoxycarbonyl or the like, R2 is alkyl or the like; R3 is hydrogen or the like; R4 is alkylene or the like; R5 is optionally substituted heterocyclic group; R6, R7, R8 and R9 are independently hydrogen; alkyl, alkoxy, or the like; R10 is optionally substituted aromatic ring, or the like; or a pharmaceutically acceptable salt thereof, which has an inhibitory activity against cholesteryl ester transfer protein (CETP).
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: April 17, 2012
    Assignee: Mitsubishi Tanabe Pharma Corporation
    Inventors: Hitoshi Kubota, Masakatsu Sugahara, Mariko Furukawa, Mayumi Takano, Daisuke Motomura
  • Publication number: 20120068285
    Abstract: According to one embodiment, a magnetoresistive effect element includes a first magnetic layer including perpendicular anisotropy to a film surface and an invariable magnetization direction, the first magnetic layer having a magnetic film including an element selected from a first group including Tb, Gd, and Dy and an element selected from a second group including Co and Fe, a second magnetic layer including perpendicular magnetic anisotropy to the film surface and a variable magnetization direction, and a nonmagnetic layer between the first magnetic layer and the second magnetic layer. The magnetic film includes amorphous phases and crystals whose particle sizes are 0.5 nm or more.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 22, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Eiji KITAGAWA, Tadaomi Daibou, Yutaka Hashimoto, Masaru Tokou, Tadashi Kai, Makoto Nagamine, Toshihiko Nagase, Katsuya Nishiyama, Koji Ueda, Hiroaki Yoda, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Publication number: 20120069640
    Abstract: A magnetoresistive element according to an embodiment includes: a first and second magnetic layers having an easy axis of magnetization in a direction perpendicular to a film plane; and a first nonmagnetic layer interposed between the first and second magnetic layers, at least one of the first and second magnetic layers including a structure formed by stacking a first and second magnetic films, the second magnetic film being located closer to the first nonmagnetic layer, the second magnetic film including a structure formed by repeating stacking of a magnetic material layer and a nonmagnetic material layer at least twice, the nonmagnetic material layers of the second magnetic film containing at least one element selected from the group consisting of Ta, W, Hf, Zr, Nb, Mo, Ti, V, and Cr, one of the first and second magnetic layers having a magnetization direction that is changed by applying a current.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 22, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toshihiko Nagase, Tadashi Kai, Makoto Nagamine, Katsuya Nishiyama, Eiji Kitagawa, Tadaomi Daibou, Koji Ueda, Hiroaki Yoda, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 8107281
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: January 31, 2012
    Assignees: Kabushiki Kaisha Toshiba, National Institute of Advanced Industrial Science and Technology
    Inventors: Tadashi Kai, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 8084611
    Abstract: The present invention is to provide a process for preparing optically active tetrahydroquinoline derivatives which can be used for the treatment and/or prevention of diseases such as arteriosclerotic diseases, dyslipidemia and the like, and a process for preparing synthetic intermediates thereof. Specifically, (2R,4S)-2-ethyl-6-trifluoromethyl-1,2,3,4-tetrahydroquinolin-4-ylamine or a salt thereof is prepared with fewer steps without using an optical resolution, and the optically active tetrahydroquinoline derivatives are obtained from the amine compound.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: December 27, 2011
    Assignee: Mitsubishi Tanabe Pharma Corporation
    Inventors: Masaki Okamoto, Akira Sakuragi, Yoshikazu Mori, Takeshi Hamada, Hitoshi Kubota, Yoshinori Nakamura, Takanori Higashijima, Norimitsu Hayashi
  • Patent number: 8076364
    Abstract: The present invention relates to a compound of the general formula (1): wherein, Y is a methylene group, and the like; A is an optionally substituted heterocyclic group, and the like; B is an optionally substituted phenyl group, and the like; R1 is an optionally substituted alkyl group, and the like; and R2 is an optionally substituted amino group, and the like; or a pharmaceutically acceptable derivative thereof, which has an inhibitory activity against cholesteryl ester transfer protein (CETP), thereby being useful for prophylaxis and/or treatment of arteriosclerotic diseases, hyperlipemia or dyslipidemia, and the like.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: December 13, 2011
    Assignee: Mitsubishi Tanabe Pharma Corporation
    Inventors: Yoshinori Nakamura, Norimitsu Hayashi, Takanori Higashijima, Hitoshi Kubota, Kozo Oka
  • Patent number: 8013408
    Abstract: A magneto-resistive device has a magnetic free layer (33), a magnetic pinned layer (31) having a magnetic moment larger than that of the magnetic free layer, and an intermediate layer (32) provided between the magnetic free layer and the magnetic pinned layer. The negative-resistance device is characterized in that the negative-resistance device shows negative resistance by making the magnetic free layer continually change the magnetization direction along with the increase of the voltage which is applied to a magneto-resistive device so that electrons flow into the negative-resistance device from a magnetic free layer side.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: September 6, 2011
    Assignee: Canon Anelva Corporation
    Inventors: Hiroki Maehara, Hitoshi Kubota, Akio Fukushima, Shinji Yuasa, Yoshishige Suzuki, Yoshinori Nagamine
  • Patent number: 7952074
    Abstract: A circuit pattern inspection method and an apparatus therefore, in which the whole of a portion to be inspected of a sample to be inspected is made to be in a predetermined changed state, the portion to be inspected is irradiated with an image-forming high-density electron beam while scanning the electron beam, secondary charged particles are detected at a portion irradiated with the electron beam after a predetermined period of time from an instance when the electron beam is irradiated, an image is formed on the basis of the thus detected secondary charged particle signal, and the portion to be inspected is inspected by using the thus formed image.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: May 31, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Shinada, Mari Nozoe, Haruo Yoda, Kimiaki Ando, Katsuhiro Kuroda, Yutaka Kaneko, Maki Tanaka, Shunji Maeda, Hitoshi Kubota, Aritoshi Sugimoto, Katsuya Sugiyama, Atsuko Takafuji, Yusuke Yajima, Hiroshi Tooyama, Tadao Ino, Takashi Hiroi, Kazushi Yoshimura, Yasutsugu Usami
  • Publication number: 20110092506
    Abstract: The present invention relates to a compound of the general formula (1): wherein, Y is a methylene group, and the like; A is an optionally substituted heterocyclic group, and the like; B is an optionally substituted phenyl group, and the like; R1 is an optionally substituted alkyl group, and the like; and R2 is an optionally substituted amino group, and the like; or a pharmaceutically acceptable derivative thereof, which has an inhibitory activity against cholesteryl ester transfer protein (CETP), thereby being useful for prophylaxis and/or treatment of arteriosclerotic diseases, hyperlipemia or dyslipidemia, and the like.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 21, 2011
    Inventors: Yoshinori NAKAMURA, Norimitsu Hayashi, Takanori Higasahijima, Hitoshi Kubota, Kozo Oka
  • Publication number: 20110073970
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 31, 2011
    Inventors: Tadashi Kai, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 7906517
    Abstract: The present invention relates to a compound of the general formula (1): wherein, Y is a methylene group, and the like; A is an optionally substituted heterocyclic group, and the like; B is an optionally substituted phenyl group, and the like; R1 is an optionally substituted alkyl group, and the like; and R2 is an optionally substituted amino group, and the like; or a pharmaceutically acceptable derivative thereof, which has an inhibitory activity against cholesteryl ester transfer protein (CETP), thereby being useful for prophylaxis and/or treatment of arteriosclerotic diseases, hyperlipemia or dyslipidemia, and the like.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: March 15, 2011
    Assignee: Mitsubishi Tanabe Pharma Corporation
    Inventors: Yoshinori Nakamura, Norimitsu Hayashi, Takanori Higashijima, Hitoshi Kubota, Kozo Oka
  • Publication number: 20110039828
    Abstract: A novel compound of the formula (I): wherein R1 is alkoxycarbonyl or the like, R2 is alkyl or the like; R3 is hydrogen or the like; R4 is alkylene or the like; R5 is optionally substituted heterocyclic group; R6, R7, R8 and R9 are independently hydrogen; alkyl, alkoxy, or the like; R10 is optionally substituted aromatic ring, or the like; or a pharmaceutically acceptable salt thereof, which has an inhibitory activity against cholesteryl ester transfer protein (CETP).
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Inventors: Hitoshi KUBOTA, Masakatsu Sugahara, Mariko Furukawa, Mayumi Takano, Daisuke Motomura
  • Patent number: 7872126
    Abstract: A novel compound of the formula (I): wherein R1 is alkoxycarbonyl or the like, R2 is alkyl or the like; R3 is hydrogen or the like; R4 is alkylene or the like; R5 is optionally substituted heterocyclic group; R6, R7, R8 and R9 are independently hydrogen; alkyl, alkoxy, or the like; R10 is optionally substituted aromatic ring, or the like; or a pharmaceutically acceptable salt thereof, which has an inhibitory activity against cholesteryl ester transfer protein (CETP).
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: January 18, 2011
    Assignee: Mitsubishi Tanabe Pharma Corporation
    Inventors: Hitoshi Kubota, Masakatsu Sugahara, Mariko Furukawa, Mayumi Takano, Daisuke Motomura
  • Patent number: 7781443
    Abstract: A novel compound of the formula (I): wherein R1 is alkoxycarbonyl or the like, R2 is alkyl or the like; R3 is hydrogen or the like; R4 is alkylene or the like; R5 is optionally substituted heterocyclic group; R6, R7, and R8 are independently hydrogen; alkyl, alkoxy, or the like; R10 is optionally substituted aromatic ring, or the like; or a pharmaceutically acceptable salt thereof, which has an inhibitory activity against cholesteryl ester transfer protein (CETP).
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: August 24, 2010
    Assignee: Mitsubishi Tanabe Pharma Corporation
    Inventors: Hitoshi Kubota, Yoshinori Nakamura, Takanori Higashijima, Yasuo Yamamoto, Kozo Oka, Shigeki Igarashi
  • Publication number: 20100131578
    Abstract: A random number generating device is constructed such that it has improved random number generation rate and allows for construction of compact circuit with ease. The random number generating device includes a magnetoresistive element that has three layers consisting of a magnetization free layer, an interlayer, and a magnetization fixed layer, and has at least two resistance values depending on arrangement of magnetization in the magnetization free layer and the magnetization fixed layer, wherein the magnetoresistive element is subjected to be applied with a magnetization current so that the inversion probability of the magnetization free layer assumes a value between 0 and 1, through which the resistance value of the magnetoresistive element is extracted as random numbers.
    Type: Application
    Filed: March 24, 2008
    Publication date: May 27, 2010
    Inventors: Akio Fukushima, Hitoshi Kubota, Kay Yakushiji, Shinji Yuasa, Koji Ando
  • Publication number: 20100055502
    Abstract: A tunneling magnetoresistive device includes: a fixed layer that includes a ferromagnetic material; a tunneling insulating film that is provided in contact with the fixed layer; and a free layer that includes a first ferromagnetic film provided in contact with the tunneling insulating film, a second ferromagnetic film whose magnetization is coupled parallel to the magnetization of the first ferromagnetic film, and a conductive film interposed between the first ferromagnetic film and the second ferromagnetic film.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 4, 2010
    Applicant: Nat Inst of Adv Industrial Sci and Tech
    Inventors: Hitoshi KUBOTA, Akio FUKUSHIMA, Kei YAKUSHIJI, Shinji YUASA, Koji ANDO, Satoshi YAKATA
  • Publication number: 20090322419
    Abstract: An amplifying apparatus includes a magneto-resistive device which has a magnetic free layer, a magnetic pinned layer having a magnetic moment larger than that of the magnetic free layer, and an intermediate layer provided in between the magnetic free layer and the magnetic pinned layer. The amplifying apparatus has a first electrode layer provided in a magnetic free layer side of the magneto-resistive device, and a second electrode layer provided in a magnetic pinned layer side of the magneto-resistive device. The amplifying apparatus further includes a direct-current bias power-source for applying a direct-current bias to the magneto-resistive device, and a load resistor. The amplifying apparatus continually causes the change of a magnetization direction of the magnetic free layer to make the magneto-resistive device show negative resistance, and thereby amplifies an input signal.
    Type: Application
    Filed: July 20, 2009
    Publication date: December 31, 2009
    Applicant: CANON ANELVA CORPORATION
    Inventors: Hiroki Maehara, Hitoshi Kubota, Akio Fukushima, Shinji Yuasa, Yoshishige Suzuki, Yoshinori Nagamine
  • Publication number: 20090292125
    Abstract: The present invention is to provide a process for preparing optically active tetrahydroquinoline derivatives which can be used for the treatment and/or prevention of diseases such as arteriosclerotic diseases, dyslipidemia and the like, and a process for preparing synthetic intermediates thereof. Specifically, (2R,4S)-2-ethyl-6-trifluoromethyl-1,2,3,4-tetrahydroquinolin-4-ylamine or a salt thereof is prepared with fewer steps without using an optical resolution, and the optically active tetrahydroquinoline derivatives are obtained from the amine compound.
    Type: Application
    Filed: March 29, 2007
    Publication date: November 26, 2009
    Applicant: MITSUBISHI TANABE PHARMA CORPORATION
    Inventors: Masaki Okamoto, Akira Sakuragi, Yoshikazu Mori, Takeshi Hamada, Hitoshi Kubota, Yoshinori Nakamura, Takanori Higashijima, Norimitsu Hayashi
  • Publication number: 20090261436
    Abstract: A magneto-resistive device has a magnetic free layer (33), a magnetic pinned layer (31) having a magnetic moment larger than that of the magnetic free layer, and an intermediate layer (32) provided between the magnetic free layer and the magnetic pinned layer. The negative-resistance device is characterized in that the negative-resistance device shows negative resistance by making the magnetic free layer continually change the magnetization direction along with the increase of the voltage which is applied to a magneto-resistive device so that electrons flow into the negative-resistance device from a magnetic free layer side.
    Type: Application
    Filed: May 19, 2009
    Publication date: October 22, 2009
    Applicant: CANON ANELVA CORPORATION
    Inventors: Hiroki Maehara, Hitoshi Kubota, Akio Fukushima, Shinji Yuasa, Yoshishige Suzuki, Yoshinori Nagamine
  • Patent number: 7599545
    Abstract: The present invention relates to a high-sensitivity inspection method and apparatus adapted for the fine-structuring of patterns, wherein defect inspection sensitivity is improved using the following technologies: detection optical system is improved in resolution by filling the clearance between an objective lens 30 and a sample 1, with a liquid, and increasing effective NA (Numerical Aperture); and when a transparent interlayer-insulating film is formed on the surface of the sample, amplitude splitting at the interface between the liquid and the insulating film is suppressed for reduction in the unevenness of optical images in brightness due to interference of thin-film, by immersing the clearance between the objective lens and the sample, with a liquid of a refractive index close to that of the transparent film.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: October 6, 2009
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yukihiro Shibata, Shunji Maeda, Hitoshi Kubota