Patents by Inventor Hitoshi Noguchi

Hitoshi Noguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945882
    Abstract: Crystals of the compound represented by formula (1), a method for the production thereof, and a method for producing an antibody-drug conjugate using the crystals.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: April 2, 2024
    Assignee: DAIICHI SANKYO COMPANY, LIMITED
    Inventors: Tatsuya Yamaguchi, Takashi Kouko, Shigeru Noguchi, Yohei Yamane, Fumikatsu Kondo, Takahiro Aoki, Tadahiro Takeda, Kohei Sakanishi, Hitoshi Sato, Tsuyoshi Ueda, Shinji Matuura, Kei Kurahashi, Yutaka Kitagawa, Tatsuya Nakamura
  • Patent number: 11913813
    Abstract: A power generation element includes a magnetic member that produces a large Barkhausen effect and magnetism collection members including an insertion part having the magnetic member inserted therethrough. The magnetism collection member includes a first component on an opposite side of a boundary plane to a magnetic field generation unit and a second component on the same side of the boundary plane as the magnetic field generation unit, the boundary plane passing through a center of an imaginary circle inscribed in the insertion part and having a diameter equal to a length of the insertion part in a third direction perpendicular to first and second directions, the first direction is a direction of the insertion of the magnetic member, and the second direction is a direction in which the magnetic field generation unit is disposed. A volume of the second component is larger than a volume of the first component.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: February 27, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshitomo Nakamura, Yoshinori Miyamoto, Shinichiro Yoshida, Hisanori Torii, Takeshi Musha, Masanori Nimura, Shizuka Ueda, Takuya Noguchi, Toshio Mekata, Yuji Kubo, Hitoshi Hasegawa
  • Patent number: 11753740
    Abstract: A method for manufacturing diamond substrate of using source gas containing hydrocarbon gas and hydrogen gas to form diamond crystal on an underlying substrate by CVD method, to form a diamond crystal layer having nitrogen-vacancy centers in at least part of the diamond crystal, nitrogen or nitride gas is mixed in the source gas, wherein the source gas is: 0.005 volume % or more and 6.000 volume % or less of the hydrocarbon gas; 93.500 volume % or more and less than 99.995 volume % of the hydrogen gas; and 5.0×10?5 volume % or more and 5.0×10?1 volume % or less of the nitrogen gas or the nitride gas, and the diamond crystal layer having the nitrogen-vacancy centers is formed. A method for manufacturing a diamond substrate to form an underlying substrate, a diamond crystal having a dense nitrogen-vacancy centers (NVCs) with an orientation of NV axis by performing the CVD.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: September 12, 2023
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., NATIONAL UNIVERSITY CORPORATION KANAZAWA UNIVERSITY
    Inventors: Hitoshi Noguchi, Norio Tokuda, Tsubasa Matsumoto
  • Publication number: 20230250553
    Abstract: A method for manufacturing diamond substrate of using source gas containing hydrocarbon gas and hydrogen gas to form diamond crystal on an underlying substrate by CVD method, to form a diamond crystal layer having nitrogen-vacancy centers in at least part of the diamond crystal, nitrogen or nitride gas is mixed in the source gas, wherein the source gas is: 0.005 volume % or more and 6.000 volume % or less of the hydrocarbon gas; 93.500 volume % or more and less than 99.995 volume % of the hydrogen gas; and 5.0×10?5 volume % or more and 5.0×10?1 volume % or less of the nitrogen gas or the nitride gas, and the diamond crystal layer having the nitrogen-vacancy centers is formed. A method for manufacturing a diamond substrate to form an underlying substrate, a diamond crystal having a dense nitrogen-vacancy centers (NVCs) with an orientation of NV axis by performing the CVD.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Applicants: SHIN-ETSU CHEMICAL CO., LTD., NATIONAL UNIVERSITY CORPORATION KANAZAWA UNIVERSITY
    Inventors: Hitoshi NOGUCHI, Norio TOKUDA, Tsubasa MATSUMOTO
  • Patent number: 11624809
    Abstract: The laser radar includes: a light source configured to emit laser light; an optical system configured to shape the laser light into a line beam that is long in one direction, and project the line beam; a scanner configured to perform scanning with the line beam in a short side direction of the line beam; and a configuration for causing light intensity of the line beam to be different in a long side direction of the line beam. The light intensity of the line beam is caused to be different, for example, by a controller controlling emission power of a plurality of light emitting portions disposed in the light source along a direction corresponding to the long side direction of the line beam.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: April 11, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hitoshi Noguchi, Eiji Takeda
  • Publication number: 20230104430
    Abstract: An object detection device for detecting an object includes a light receiving section that has a light receiving surface in which a plurality of light receiving elements capable of receiving incident light including reflected light of emitted radiated light are arranged in a plane, and that outputs a first light receiving signal according to a light receiving state of the light receiving element in a first area, when a predetermined usable area in the usable areas on the light receiving surface is referred to as a first area, an image acquisition part that acquires an ambient light image indicating a light receiving intensity of ambient light using the first light receiving signal, and a malfunction detection part that detects a malfunction of the light receiving element in the first area using the ambient light image.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Inventors: KEIKO AKIYAMA, DAISUKE TAKASAO, YUKIHIRO JOH, HITOSHI NOGUCHI
  • Patent number: 11555990
    Abstract: A laser radar includes: a light source including a laser diode; an optical system configured to shape laser light emitted from the laser diode, into a line beam that is long in one direction, and project the line beam to a target area; and a scanner configured to perform scanning with the line beam in a short side direction of the line beam. The laser diode is disposed such that a fast axis of the laser diode extends along a direction corresponding to the short side direction of the line beam.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: January 17, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Eiji Takeda, Hitoshi Noguchi
  • Publication number: 20230010575
    Abstract: A method of manufacturing a diamond substrate includes: a step of placing a laser condensing unit 190 configured to condense laser light B so as to face an upper surface 10a of a block 10 of single crystal diamond; and a step of forming a modified layer 20, which includes a processing mark 21b of graphite and a crack 22b extending along a surface (111) around the processing mark 21b, along the surface (111) of the single crystal diamond at a predetermined depth from an upper surface of the block by radiating the laser light B on the upper surface 10a of the block 10 from the laser condensing unit 190 under predetermined conditions and condensing the laser light B inside the block 10, and moving the laser condensing unit 190 and the block 10 in a relative manner two-dimensionally.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 12, 2023
    Inventors: Junichi IKENO, Yohei YAMADA, Hideki SUZUKI, Rika MATSUO, Hitoshi NOGUCHI
  • Publication number: 20230002933
    Abstract: A method of manufacturing a diamond substrate includes: a step of placing a laser condensing unit 190 configured to condense laser light B so as to face an upper surface 10a of a block 10 of single crystal diamond, a step of forming a modified layer 20, which includes a processing mark 21 of graphite and a crack 22b extending along a surface (111) around the processing mark 21, in a partial region of the upper surface 10a of the block 10 along the surface (111) of the single crystal diamond, along the surface (111) of the single crystal diamond at a predetermined depth from the upper surface 10a of the block 10 by radiating the laser light B on the upper surface 10a of the block 10 from the laser condensing unit 190 under predetermined conditions and condensing the laser light B inside the block 10, and moving the laser condensing unit 190 and the block 10 in a relative manner two-dimensionally, and a step of forming a cleavage plane 25 at the predetermined depth of the remaining region of the upper surface 1
    Type: Application
    Filed: July 1, 2022
    Publication date: January 5, 2023
    Inventors: Junichi IKENO, Yohei YAMADA, Hideki SUZUKI, Rika MATSUO, Hitoshi NOGUCHI
  • Patent number: 11479421
    Abstract: A container terminal operation method for a container terminal including a storage area in which a storage block is vertically arranged, wherein: a container conveying vehicle orbits through the storage block, apron, etc.; a container is handed over between the container conveying vehicle and the storage block on a lateral side thereof in a longitudinal direction; a handover area for handover of the container between the container conveying vehicle and an external vehicle, is defined in an area closer to a land than a land-side end; an external traveling lane is defined for the external vehicle; and the handover of the container in the handover area is carried out in a state where the container conveying vehicle and the external vehicle are both directed in a direction intersecting the longitudinal direction of the storage block.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: October 25, 2022
    Assignees: JAPAN ASSOCIATION OF CARGO-HANDLING MACHINERY SYSTEMS, MITSUI E&S MACHINERY CO., LTD., JFE ENGINEERING CORPORATION
    Inventors: Hideto Kiyohara, Tetsuya Shiraishi, Hitoshi Noguchi, Yoshiharu Yoshida, Ryoma Inui, Kenichi Murano
  • Patent number: 11180865
    Abstract: It is an object to provide a method for producing a diamond substrate effective for reducing various defects including dislocation defects and a foundation substrate used for the same. This object is achieved by a foundation substrate for forming a diamond film by a chemical vapor deposition method, wherein an off angle is provided to the surface of the foundation substrate with respect to a predetermined crystal plane orientation.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: November 23, 2021
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., NATIONAL INSTITUTE OF ADVANCED, INDUSTRIAL SCIENCE AND TECHNOLOGY, NATIONAL UNIVERSITY CORPORATION, KANAZAWA UNIVERSITY
    Inventors: Hitoshi Noguchi, Toshiharu Makino, Masahiko Ogura, Hiromitsu Kato, Hiroyuki Kawashima, Satoshi Yamasaki, Norio Tokuda
  • Publication number: 20210354937
    Abstract: A container terminal operation method for a container terminal including a storage area in which a storage block is vertically arranged, wherein: a container conveying vehicle orbits through the storage block, apron, etc.; a container is handed over between the container conveying vehicle and the storage block on a lateral side thereof in a longitudinal direction; a handover area for handover of the container between the container conveying vehicle and an external vehicle, is defined in an area closer to a land than a land-side end; an external traveling lane is defined for the external vehicle; and the handover of the container in the handover area is carried out in a state where the container conveying vehicle and the external vehicle are both directed in a direction intersecting the longitudinal direction of the storage block.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 18, 2021
    Applicants: JAPAN ASSOCIATION OF CARGO-HANDLING MACHINERY SYSTEMS, MITSUI E&S MACHINERY CO., LTD., JFE ENGINEERING CORPORATION
    Inventors: Hideto KIYOHARA, Tetsuya SHIRAISHI, Hitoshi NOGUCHI, Yoshiharu YOSHIDA, Ryoma INUI, Kenichi MURANO
  • Patent number: 11066757
    Abstract: A method for manufacturing a diamond substrate, including: a first step of preparing patterned diamond on a foundation surface, a second step of growing diamond from the patterned diamond prepared in the first step to form the diamond in a pattern gap of the patterned diamond prepared in the first step, a third step of removing the patterned diamond prepared in the first step to form a patterned diamond composed of the diamond formed in the second step, and a fourth step of growing diamond from the patterned diamond formed in the third step to form the diamond in a pattern gap of the patterned diamond formed in the third step. There can be provided a method for manufacturing a diamond substrate which can sufficiently suppress dislocation defects, a high-quality diamond substrate, and a freestanding diamond substrate.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: July 20, 2021
    Assignees: Shin-Etsu Chemical Co., Ltd., National Institute of Advanced Industrial Science and Technology, National University Corporation Kanazawa University
    Inventors: Hitoshi Noguchi, Shozo Shirai, Toshiharu Makino, Masahiko Ogura, Hiromitsu Kato, Hiroyuki Kawashima, Daisuke Kuwabara, Satoshi Yamasaki, Daisuke Takeuchi, Norio Tokuda, Takao Inokuma, Tsubasa Matsumoto
  • Publication number: 20210148005
    Abstract: A method for manufacturing diamond substrate of using source gas containing hydrocarbon gas and hydrogen gas to form diamond crystal on an underlying substrate by CVD method, to form a diamond crystal layer having nitrogen-vacancy centers in at least part of the diamond crystal, nitrogen or nitride gas is mixed in the source gas, wherein the source gas is: 0.005 volume % or more and 6.000 volume % or less of the hydrocarbon gas; 93.500 volume % or more and less than 99.995 volume % of the hydrogen gas; and 5.0×10?5 volume % or more and 5.0×10?1 volume % or less of the nitrogen gas or the nitride gas, and the diamond crystal layer having the nitrogen-vacancy centers is formed. A method for manufacturing a diamond substrate to form an underlying substrate, a diamond crystal having a dense nitrogen-vacancy centers (NVCs) with an orientation of NV axis by performing the CVD.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 20, 2021
    Applicants: SHIN-ETSU CHEMICAL CO., LTD., NATIONAL UNIVERSITY CORPORATION KANAZAWA UNIVERSITY
    Inventors: Hitoshi NOGUCHI, Norio TOKUDA, Tsubasa MATSUMOTO
  • Patent number: 10971358
    Abstract: A substrate manufacturing method capable of easily obtaining a thin magnesium oxide single crystal substrate is provided. A first step is performed which disposes a condenser for condensing a laser beam on an irradiated surface of a magnesium oxide single crystal member in a non-contact manner. A second step is performed which forms processing mark lines in parallel by irradiating the laser beam to the surface of the single crystal substrate under designated irradiation conditions to condense the laser beam into an inner portion of the single crystal substrate while moving the condenser and the single crystal substrate relative to each other in a two-dimensional manner.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: April 6, 2021
    Assignees: SHIN-ETSU POLYMER CO., LTD., SHIN-ETSU CHEMICAL CO., LTD., NATIONAL UNIVERSITY CORPORATION SAITAMA UNIVERSITY
    Inventors: Junichi Ikeno, Yohei Yamada, Hideki Suzuki, Hitoshi Noguchi
  • Publication number: 20200363511
    Abstract: A laser radar includes: a light source including a laser diode; an optical system configured to shape laser light emitted from the laser diode, into a line beam that is long in one direction, and project the line beam to a target area; and a scanner configured to perform scanning with the line beam in a short side direction of the line beam. The laser diode is disposed such that a fast axis of the laser diode extends along a direction corresponding to the short side direction of the line beam.
    Type: Application
    Filed: August 6, 2020
    Publication date: November 19, 2020
    Inventors: Eiji Takeda, Hitoshi Noguchi
  • Publication number: 20200363510
    Abstract: The laser radar includes: a light source configured to emit laser light; an optical system configured to shape the laser light into a line beam that is long in one direction, and project the line beam; a scanner configured to perform scanning with the line beam in a short side direction of the line beam; and a configuration for causing light intensity of the line beam to be different in a long side direction of the line beam. The light intensity of the line beam is caused to be different, for example, by a controller controlling emission power of a plurality of light emitting portions disposed in the light source along a direction corresponding to the long side direction of the line beam.
    Type: Application
    Filed: August 6, 2020
    Publication date: November 19, 2020
    Inventors: Hitoshi Noguchi, Eiji Takeda
  • Patent number: 10727129
    Abstract: A substrate manufacturing method includes: a first step of disposing a condenser for condensing a laser beam in a non-contact manner on a surface 20r of a magnesium oxide single crystal substrate 20 to be irradiated; and a second step of irradiating a laser beam to a surface of the magnesium oxide single crystal substrate 20 and condensing the laser beam into an inner portion of the single crystal member under designated irradiation conditions using the condenser, and at a same time, two-dimensionally moving the condenser and the magnesium oxide single crystal substrate 20 relatively to each other, and sequentially forming processing marks to sequentially allow planar peeling.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: July 28, 2020
    Assignees: SHIN-ETSU POLYMER CO., LTD., NATIONAL UNIVERSITY CORPORATION SAITAMA UNIVERSITY, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Junichi Ikeno, Yohei Yamada, Hideki Suzuki, Hitoshi Noguchi
  • Publication number: 20200176570
    Abstract: A laminate substrate which includes a single crystal diamond (111) layer, including: an underlying substrate, an intermediate layer on the underlying substrate, and the single crystal diamond (111) layer on the intermediate layer, in which the underlying substrate has a main surface which has an off angle within a range, ?8.0° or more and ?0.5° or less, or +0.5° or more and +8.0° or less in a crystal axis [_1_1 2] direction or a threefold symmetry direction thereof relative to a crystal plane orientation of (111), and the single crystal diamond (111) layer has an off angle within a range, more than ?10.5° and less than ?2.0°, or more than +2.0° and less than +10.5° in the crystal axis [_1_1 2] direction or a threefold symmetry direction thereof relative to the crystal plane orientation of (111).
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventor: Hitoshi NOGUCHI
  • Publication number: 20190279867
    Abstract: A substrate manufacturing method capable of easily obtaining a thin magnesium oxide single crystal substrate is provided. A first step is performed which disposes a condenser for condensing a laser beam on an irradiated surface of a magnesium oxide single crystal member in a non-contact manner. A second step is performed which forms processing mark lines in parallel by irradiating the laser beam to the surface of the single crystal substrate under designated irradiation conditions to condense the laser beam into an inner portion of the single crystal substrate while moving the condenser and the single crystal substrate relative to each other in a two-dimensional manner.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventors: Junichi IKENO, Yohei YAMADA, Hideki SUZUKI, Hitoshi NOGUCHI