Patents by Inventor Hitoshi Sato

Hitoshi Sato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130273220
    Abstract: Provided is a production method for a purified tea extract, which enables efficiently removing gallic acid and collecting the non-polymer catechins in a high yield without impairing original taste and flavor of tea. The production method for a purified tea extract according to the present invention comprises bringing a tea extract into contact with an OH-type anion exchange resin and an H-type cation exchange resin.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 17, 2013
    Applicant: KAO Corporation
    Inventors: Takuma Ito, Kenichi Shikata, Hitoshi Sato, Eizo Maruyama
  • Publication number: 20130168833
    Abstract: A method for enhancing growth of device-quality planar semipolar nitride semiconductor thin films via metalorganic chemical vapor deposition (MOCVD) by using an (Al,In,Ga)N nucleation layer containing at least some indium. Specifically, the method comprises loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Application
    Filed: February 25, 2013
    Publication date: July 4, 2013
    Inventors: Hitoshi Sato, John F. Kaeding, Michael Iza, Benjamin A. Haskell, Troy J. Baker, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8405128
    Abstract: A method for enhancing growth of device-quality planar semipolar nitride semiconductor thin films via metalorganic chemical vapor deposition (MOCVD) by using an (Al, In, Ga)N nucleation layer containing at least some indium. Specifically, the method comprises loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: March 26, 2013
    Assignee: The Regents of the University of California
    Inventors: Hitoshi Sato, John F. Kaeding, Michael Iza, Benjamin A. Haskell, Troy J. Baker, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8368109
    Abstract: An (Al,Ga,In)N-based light emitting diode (LED), comprising a p-type surface of the LED bonded with a transparent submount material to increase light extraction at the p-type surface, wherein the LED is a substrateless membrane.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: February 5, 2013
    Assignee: The Regents of the University of California
    Inventors: Kenji Iso, Hirokuni Asamizu, Makoto Saito, Hitoshi Sato, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8368179
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 5, 2013
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: John F. Kaeding, Dong-Seon Lee, Michael Iza, Troy J. Baker, Hitoshi Sato, Benjamin A. Haskell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20130015492
    Abstract: A method for growing III-V nitride films having an N-face or M-plane using an ammonothermal growth technique. The method comprises using an autoclave, heating the autoclave, and introducing ammonia into the autoclave to produce smooth N-face or M-plane Gallium Nitride films and bulk GaN.
    Type: Application
    Filed: September 6, 2012
    Publication date: January 17, 2013
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Tadao Hashimoto, Hitoshi Sato, Shuji Nakamura
  • Patent number: 8299452
    Abstract: A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 30, 2012
    Assignee: The Regents of the University of California
    Inventors: Hitoshi Sato, Hirohiko Hirasawa, Roy B. Chung, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20120244255
    Abstract: Provided is a method for producing a purified tea extract, which can satisfy both the yield of the non-polymer catechins and the removal rate of gallic acid at high levels. The method is characterized in that a tea extract, which contains an aqueous solution of an organic solvent, brought into contact with an anion exchange resin.
    Type: Application
    Filed: December 8, 2010
    Publication date: September 27, 2012
    Applicant: KAO CORPORATION
    Inventors: Kenichi Shikata, Hitoshi Sato
  • Patent number: 8263424
    Abstract: A method for growing III-V nitride films having an N-face or M-plane using an ammonothermal growth technique. The method comprises using an autoclave, heating the autoclave, and introducing ammonia into the autoclave to produce smooth N-face or M-plane Gallium Nitride films and bulk GaN.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: September 11, 2012
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Tadao Hashimoto, Hitoshi Sato, Shuji Nakamura
  • Publication number: 20120205620
    Abstract: A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 16, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hitoshi Sato, Hirohiko Hirasawa, Roy B. Chung, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20120205625
    Abstract: A nitride light emitting diode, on a patterned substrate, comprising a nitride interlayer having at least two periods of alternating layers of InxGa1-xN and InyGa1-yN where 0<x<1 and 0?y<1, and a nitride based active region having at least one quantum well structure on the nitride interlayer.
    Type: Application
    Filed: April 24, 2012
    Publication date: August 16, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael Iza, Hitoshi Sato, Eu Jin Hwang, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20120199809
    Abstract: A method of device growth and p-contact processing that produces improved performance for non-polar III-nitride light emitting diodes and laser diodes. Key components using a low defect density substrate or template, thick quantum wells, a low temperature p-type III-nitride growth technique, and a transparent conducting oxide for the electrodes.
    Type: Application
    Filed: April 5, 2012
    Publication date: August 9, 2012
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Mathew C. Schmidt, Kwang Choong Kim, Hitoshi Sato, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20120187415
    Abstract: A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the <011> direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 26, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John F. Kaeding, Hitoshi Sato, Michael Iza, Hirokuni Asamizu, Hong Zhong, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8193079
    Abstract: A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the <011> direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: June 5, 2012
    Assignee: The Regents of the University of California
    Inventors: John F. Kaeding, Hitoshi Sato, Michael Iza, Hirokuni Asamizu, Hong Zhong, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8183557
    Abstract: A nitride light emitting diode, on a patterned substrate, comprising a nitride interlayer having at least two periods of alternating layers of InxGa1?xN and InyGa1?yN where 0<x<1 and 0?y<1, and a nitride based active region having at least one quantum well structure on the nitride interlayer.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: May 22, 2012
    Assignee: The Regents of the University of California
    Inventors: Michael Iza, Hitoshi Sato, Eu Jin Hwang, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20120121761
    Abstract: This invention relates to a process for producing a tea extract. The process includes subjecting a first tea extract solution, which has been obtained from tea, to solid-liquid separation so that a turbidity becomes 200 NTU or lower when a concentration of non-polymer catechins is adjusted to 1 wt %, thereby obtaining a second tea extract solution in which a concentration of (A) non-polymer catechins is from 0.2 to 5 wt % and a concentration of non-polymer catechins in solid content is from 15 to 80 wt %; and then subjecting the second tea extract solution to a heat treatment at a temperature of from 95 to 140° C. for an F value of from 0.05 to 40 min.
    Type: Application
    Filed: August 7, 2008
    Publication date: May 17, 2012
    Applicant: Kao Corporation
    Inventors: Masahiro Fukuda, Eri Itaya, Hirokazu Takahashi, Miwa Ogasawara, Hitoshi Sato, Kenichi Shikata, Keiji Shibata
  • Publication number: 20120086931
    Abstract: A stage device that includes a base. A stage movable portion is movable along a surface of the base. An interferometer measures a position of the stage movable portion using measurement light. At least one of a piping element and a wiring element are connected to the stage movable portion. An auxiliary member, including a plurality of members connected with each other, guides a bend of at least one of the piping element and the wiring element. A heat insulating sheet is supported by the auxiliary member. The heat insulating material is provided between a space through which the measurement light of the interferometer passes, and the at least one of the piping element and the wiring element.
    Type: Application
    Filed: December 14, 2011
    Publication date: April 12, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hitoshi Sato, Yasuhito Sasaki, Keiji Emoto
  • Patent number: 8148713
    Abstract: A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 3, 2012
    Assignee: The Regents of the University of California
    Inventors: Hitoshi Sato, Hirohiko Hirasawa, Roy B. Chung, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20120074525
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Application
    Filed: December 6, 2011
    Publication date: March 29, 2012
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John F. Kaeding, Dong-Seon Lee, Michael Iza, Troy J. Baker, Hitoshi Sato, Benjamin A. Haskell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20120056158
    Abstract: An (Al,Ga,In)N-based light emitting diode (LED), comprising a p-type surface of the LED bonded with a transparent submount material to increase light extraction at the p-type surface, wherein the LED is a substrateless membrane.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 8, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Kenji Iso, Hirokuni Asamizu, Makoto Saito, Hitoshi Sato, Steven P. DenBaars, Shuji Nakamura