Patents by Inventor Hoki Kim

Hoki Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10354945
    Abstract: Multi-surface edge pads for vertical mount packages and methods of making package stacks are provided. Example substrates for vertical surface mount to a motherboard have multi-surface edge pads. The vertical mount substrates may be those of a laminate-based FlipNAND. The multi-surface edge pads have cutouts or recesses that expose more surfaces and more surface area of the substrate for bonding with the motherboard. The cutouts in the edge pads allow more solder to be used between the attachment surface of the substrate and the motherboard. The placement and geometry of the resulting solder joint is stronger and has less internal stress than conventional solder joints for vertical mounting. In an example process, blind holes can be drilled into a thickness of a substrate, and the blind holes plated with metal. The substrate can be cut in half though the plated holes to provide two substrates with plated multi-surface edge pads including the cutouts for mounting to the motherboard.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: July 16, 2019
    Assignee: Invensas Corporation
    Inventors: Rajesh Katkar, Min Tao, Javier A. Delacruz, Hoki Kim, Akash Agrawal
  • Patent number: 10354976
    Abstract: Dies-on-package devices and methods therefor are disclosed. In a dies-on-package device, a first IC die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with respect to the first IC die. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first IC die, and around bases and shafts of the conductive lines. A plurality of second IC dies is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. The plurality of second IC dies are respectively coupled to the sets of the conductive lines in middle third portions respectively of the plurality of second IC dies for corresponding fan-in regions thereof.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: July 16, 2019
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9991235
    Abstract: Package-on-package (“PoP”) devices with upper RDLs of WLP (“WLP”) components and methods therefor are disclosed. In a PoP device, a first IC die is surface mount coupled to an upper surface of the package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with reference to the first IC. A molding layer is formed over the upper surface of the package substrate. A first and a second WLP microelectronic component is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. Each of the first and the second WLP microelectronic components have a second IC die located below a first RDL respectively thereof. A third and a fourth IC die are respectively surface mount coupled over the first and the second WLP microelectronic components.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: June 5, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9991233
    Abstract: Package-on-package (“PoP”) devices with same level wafer-level packaged (“WLP”) components and methods therefor are disclosed. In a PoP device, a first integrated circuit die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region. The first conductive lines extend away from the upper surface of the package substrate. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first integrated circuit die, and around bases and shafts of the conductive lines. WLP microelectronic components are located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: June 5, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9985007
    Abstract: Package-on-package (“PoP”) devices with multiple levels and methods therefor are disclosed. In a PoP device, a first integrated circuit die is surface mount coupled to an upper surface of a package substrate. First and second conductive lines are coupled to the upper surface of the package substrate respectively at different heights in a fan-out region. A first molding layer is formed over the upper surface of the package substrate. A first and a second wafer-level packaged microelectronic component are located above an upper surface of the first molding layer respectively surface mount coupled to a first and a second set of upper portions of the first conductive lines. A third and a fourth wafer-level packaged microelectronic component are located above the first and the second wafer-level packaged microelectronic component respectively surface mount coupled to a first and a second set of upper portions of the second conductive lines.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: May 29, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9972609
    Abstract: Package-on-package (“PoP”) devices with WLP (“WLP”) components with dual RDLs (“RDLs”) for surface mount dies and methods therefor. In a PoP, a first IC die surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region. A molding layer is formed over the upper surface of the package substrate. A first and a second WLP microelectronic component are located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. Each of the first and the second WLP microelectronic components have a second IC die located between a first RDL and a second RDL. A third and a fourth IC die are respectively surface mount coupled over the first and the second WLP microelectronic components.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: May 15, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9972573
    Abstract: Wafer-level packaged components are disclosed. In a wafer-level-packaged, an integrated circuit die has first contacts in an inner third region of a surface of the integrated circuit die. A redistribution layer has second contacts in an inner third region of a first surface of the redistribution layer and third contacts in an outer third region of a second surface of the redistribution layer opposite the first surface thereof. The second contacts of the redistribution layer are coupled for electrical conductivity to the first contacts of the integrated circuit die with the surface of the integrated circuit die face-to-face with the first surface of the redistribution layer. The third contacts are offset from the second contacts for being positioned in a fan-out region for association at least with the outer third region of the second surface of the redistribution layer, the third contacts being surface mount contacts.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: May 15, 2018
    Assignee: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9891856
    Abstract: A memory system includes an address remapping circuit and a first set of memory devices. The address remapping circuit includes a plurality of input terminals for receiving a plurality of chip selection signals and a plurality of chip identification signals. The address remapping circuit receives input signals corresponding to a portion of the plurality of chip selection signals and the plurality of chip identification signals through corresponding input terminals of the plurality of input terminals and generates a plurality of internal chip selection signals based on the input signals and a remapping control signal. Each of the first set of memory devices is configured to be selected in response to a corresponding internal chip selection signal of the plurality of internal chip selection signals.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: February 13, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Won-Hyung Song, Duk-Sung Kim, Hoki Kim, Soo-Woong Ahn, Ha-Ryong Yoon, Ju-Yun Jung
  • Publication number: 20180040587
    Abstract: Vertical memory modules enabled by fan-out redistribution layer(s) (RDLs) are provided. Memory dies may be stacked with each die having a signal pad directed to a sidewall of the die. A redistribution layer (RDL) is built on sidewalls of the stacked dies and coupled with the signal pads. The RDL may fan-out to UBM and solder balls, for example. An alternative process reconstitutes dies on a carrier with a first RDL on a front side of the dies. The dies and first RDL are encapsulated, and the modules vertically disposed for a second reconstitution on a second carrier. A second RDL is applied to exposed contacts of the vertically disposed modules and first RDLs. The vertical modules and second RDL are encapsulated in turn with a second mold material. The assembly may be singulated into individual memory modules, each with a fan-out RDL on the sidewalls of the vertically disposed dies.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 8, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Zhuowen Sun, Belgacem Haba, Hoki Kim, Wael Zohni, Shaowu Huang
  • Publication number: 20180040544
    Abstract: Multi-surface edge pads for vertical mount packages and methods of making package stacks are provided. Example substrates for vertical surface mount to a motherboard have multi-surface edge pads. The vertical mount substrates may be those of a laminate-based FlipNAND. The multi-surface edge pads have cutouts or recesses that expose more surfaces and more surface area of the substrate for bonding with the motherboard. The cutouts in the edge pads allow more solder to be used between the attachment surface of the substrate and the motherboard. The placement and geometry of the resulting solder joint is stronger and has less internal stress than conventional solder joints for vertical mounting. In an example process, blind holes can be drilled into a thickness of a substrate, and the blind holes plated with metal. The substrate can be cut in half though the plated holes to provide two substrates with plated multi-surface edge pads including the cutouts for mounting to the motherboard.
    Type: Application
    Filed: July 26, 2017
    Publication date: February 8, 2018
    Applicant: Invensas Corporation
    Inventors: Rajesh Emeka Katkar, Min Tao, Javier A. Delacruz, Hoki Kim, Akash Agrawal
  • Publication number: 20180026019
    Abstract: Package-on-package (“PoP”) devices with WLP (“WLP”) components with dual RDLs (“RDLs”) for surface mount dies and methods therefor. In a PoP, a first IC die surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region. A molding layer is formed over the upper surface of the package substrate. A first and a second WLP microelectronic component are located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. Each of the first and the second WLP microelectronic components have a second IC die located between a first RDL and a second RDL. A third and a fourth IC die are respectively surface mount coupled over the first and the second WLP microelectronic components.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20180026017
    Abstract: Dies-on-package devices and methods therefor are disclosed. In a dies-on-package device, a first IC die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with respect to the first IC die. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first IC die, and around bases and shafts of the conductive lines. A plurality of second IC dies is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. The plurality of second IC dies are respectively coupled to the sets of the conductive lines in middle third portions respectively of the plurality of second IC dies for corresponding fan-in regions thereof.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20180026016
    Abstract: Package-on-package (“PoP”) devices with upper RDLs of WLP (“WLP”) components and methods therefor are disclosed. In a PoP device, a first IC die is surface mount coupled to an upper surface of the package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with reference to the first IC. A molding layer is formed over the upper surface of the package substrate. A first and a second WLP microelectronic component is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. Each of the first and the second WLP microelectronic components have a second IC die located below a first RDL respectively thereof. A third and a fourth IC die are respectively surface mount coupled over the first and the second WLP microelectronic components.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20180026018
    Abstract: Package-on-package (“PoP”) devices with multiple levels and methods therefor are disclosed. In a PoP device, a first integrated circuit die is surface mount coupled to an upper surface of a package substrate. First and second conductive lines are coupled to the upper surface of the package substrate respectively at different heights in a fan-out region. A first molding layer is formed over the upper surface of the package substrate. A first and a second wafer-level packaged microelectronic component are located above an upper surface of the first molding layer respectively surface mount coupled to a first and a second set of upper portions of the first conductive lines. A third and a fourth wafer-level packaged microelectronic component are located above the first and the second wafer-level packaged microelectronic component respectively surface mount coupled to a first and a second set of upper portions of the second conductive lines.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20180025987
    Abstract: Wafer-level packaged components are disclosed. In a wafer-level-packaged, an integrated circuit die has first contacts in an inner third region of a surface of the integrated circuit die. A redistribution layer has second contacts in an inner third region of a first surface of the redistribution layer and third contacts in an outer third region of a second surface of the redistribution layer opposite the first surface thereof. The second contacts of the redistribution layer are coupled for electrical conductivity to the first contacts of the integrated circuit die with the surface of the integrated circuit die face-to-face with the first surface of the redistribution layer. The third contacts are offset from the second contacts for being positioned in a fan-out region for association at least with the outer third region of the second surface of the redistribution layer, the third contacts being surface mount contacts.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Publication number: 20180026011
    Abstract: Package-on-package (“PoP”) devices with same level wafer-level packaged (“WLP”) components and methods therefor are disclosed. In a PoP device, a first integrated circuit die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region. The first conductive lines extend away from the upper surface of the package substrate. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first integrated circuit die, and around bases and shafts of the conductive lines. WLP microelectronic components are located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines.
    Type: Application
    Filed: December 28, 2016
    Publication date: January 25, 2018
    Applicant: Invensas Corporation
    Inventors: Min Tao, Hoki Kim, Ashok S. Prabhu, Zhuowen Sun, Wael Zohni, Belgacem Haba
  • Patent number: 9728524
    Abstract: A microelectronic assembly includes a plurality of stacked microelectronic packages, each comprising a dielectric element having a major surface, an interconnect region adjacent an interconnect edge surface which extends away from the major surface, and plurality of package contacts at the interconnect region. A microelectronic element has a front surface with chip contacts thereon coupled to the package contacts, the front surface overlying and parallel to the major surface. The microelectronic packages are stacked with planes defined by the dielectric elements substantially parallel to one another, and the package contacts electrically coupled with panel contacts at a mounting surface of a circuit panel via an electrically conductive material, the planes defined by the dielectric elements being oriented at a substantial angle to the mounting surface.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 8, 2017
    Assignee: Invensas Corporation
    Inventors: Min Tao, Zhuowen Sun, Hoki Kim, Wael Zohni, Akash Agrawal
  • Publication number: 20160162217
    Abstract: A memory system includes an address remapping circuit and a first set of memory devices. The address remapping circuit includes a plurality of input terminals for receiving a plurality of chip selection signals and a plurality of chip identification signals. The address remapping circuit receives input signals corresponding to a portion of the plurality of chip selection signals and the plurality of chip identification signals through corresponding input terminals of the plurality of input terminals and generates a plurality of internal chip selection signals based on the input signals and a remapping control signal. Each of the first set of memory devices is configured to be selected in response to a corresponding internal chip selection signal of the plurality of internal chip selection signals.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 9, 2016
    Inventors: Won-Hyung SONG, Duk-Sung KIM, Hoki KIM, Soo-Woong AHN, Ha-Ryong YOON, Ju-Yun JUNG
  • Patent number: 8994402
    Abstract: A level shifter and integrated level shifter and metastability resolution flop circuit are disclosed. A circuit includes a generation circuit, in a first voltage domain, coupled to receive a logic signal via a single-ended input and configured to generate true and complementary values of the logic signal. The circuit further includes a storage circuit coupled to receive the true and complementary values of the logic signal from the generation circuit. The storage circuit is configured to store the true and complementary values of the logic signal. The storage circuit is in a second voltage domain. The circuit further includes an output circuit coupled to the storage circuit and configured to provide a differential output signal having true and complementary values corresponding to the true and complementary values of the logic signal. The circuit may be combined with a latch circuit coupled to receive the differential output signal.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: March 31, 2015
    Assignee: Oracle International Corporation
    Inventors: Changku Hwang, Robert P Masleid, Hoki Kim, Ha Pham
  • Patent number: 8816720
    Abstract: A system and method of shifting a data signal from a first voltage domain having a first logic level to a second voltage domain having a second logic level, the second logic level having a second logical high state greater than a first logical high state in the first logic level and a single power supply logic level shifter circuit having a single power supply source, an input node and an output node, the input node coupled to a sender circuit in the first voltage domain and the output node coupled to a receiver circuit in the second voltage domain, the single power supply source being coupled only to a single power grid in the second voltage domain.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: August 26, 2014
    Assignee: Oracle International Corporation
    Inventors: Hoki Kim, Changku Hwang, Jinuk Shin