Patents by Inventor Hong-Seng Shue

Hong-Seng Shue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9614031
    Abstract: A high-voltage super junction device is disclosed. The device includes a semiconductor substrate region having a first conductivity type and having neighboring trenches disposed therein. The neighboring trenches each have trench sidewalls and a trench bottom surface. A region having a second conductivity type is disposed in or adjacent to a trench and meets the semiconductor substrate region at a p-n junction. A gate electrode is formed on the semiconductor substrate region and is electrically isolated from the semiconductor substrate region by a gate dielectric. A body region having the second conductivity type is disposed on opposite sides of the gate electrode near a surface of the semiconductor substrate. A source region having the first conductivity type is disposed within in the body region on opposite sides of the gate electrode near the surface of the semiconductor substrate.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: April 4, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Shou-Wei Lee, Shao-Chi Yu, Hong-Seng Shue, Kun-Ming Huang, Po-Tao Chu
  • Publication number: 20170062334
    Abstract: The present disclosure relates to a semiconductor device. A fuse layer is arranged within a first dielectric layer. A bond pad is arranged on the first dielectric layer. A second dielectric layer is arranged along sidewall and upper surfaces of the bond pad. A passivation layer is arranged over the first and second dielectric layers, and the passivation layer having a bond pad opening overlying the bond pad and a fuse opening overlying the fuse layer. The bond pad has a bottom surface that is co-planar with a bottom surface of the passivation layer.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: Tai-I Yang, Chun-Yi Yang, Chih-Hao Lin, Hong-Seng Shue, Ruei-Hung Jang
  • Patent number: 9558986
    Abstract: A semiconductor structure includes a semiconductor substrate, a first doped region, a second doped region and a dielectric. The first doped region and the second doped region respectively has an aspect ratio and a dopant concentration uniformity along a depth in the semiconductor substrate. The dielectric is between the first doped region and the second doped region. The dopant concentration uniformity is within 0.2% and the aspect ratio of the semiconductor substrate is greater than about 10.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: January 31, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tai-I Yang, Hong-Seng Shue, Kun-Ming Huang, Chih-Heng Shen, Po-Tao Chu
  • Patent number: 9496221
    Abstract: The present disclosure relates to a method of fabricating a semiconductor device. A semiconductor device includes a bond pad and a fuse layer. The bond pad includes a coating on an upper surface. A dielectric layer is formed over the bond pad and the fuse layer. A passivation layer is formed over the dielectric layer. An etch is performed to form a bond pad opening and a fuse opening. The etch is performed using only a single mask. The fuse opening defines a fuse window. The upper surface of the bond pad is exposed by substantially removing the coating from the entire upper surface.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: November 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Marcus Yang, Chih-Hao Lin, Hong-Seng Shue, Ruei-Hung Jang
  • Publication number: 20160172250
    Abstract: A device includes a semiconductor substrate, a contact plug over the semiconductor substrate, and an Inter-Layer Dielectric (ILD) layer over the semiconductor substrate, with the contact plug being disposed in the ILD. An air gap is sealed by a portion of the ILD and the semiconductor substrate. The air gap forms a full air gap ring encircling a portion of the semiconductor substrate.
    Type: Application
    Filed: February 22, 2016
    Publication date: June 16, 2016
    Inventors: Hong-Seng Shue, Tai-I Yang, Wei-Ding Wu, Ming-Tai Chung, Shao-Chi Yu
  • Patent number: 9269609
    Abstract: A device includes a semiconductor substrate, a contact plug over the semiconductor substrate, and an Inter-Layer Dielectric (ILD) layer over the semiconductor substrate, with the contact plug being disposed in the ILD. An air gap is sealed by a portion of the ILD and the semiconductor substrate. The air gap forms a full air gap ring encircling a portion of the semiconductor substrate.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: February 23, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Seng Shue, Tai-I Yang, Wei-Ding Wu, Ming-Tai Chung, Shao-Chi Yu
  • Publication number: 20150325642
    Abstract: A high-voltage super junction device is disclosed. The device includes a semiconductor substrate region having a first conductivity type and having neighboring trenches disposed therein. The neighboring trenches each have trench sidewalls and a trench bottom surface. A region having a second conductivity type is disposed in or adjacent to a trench and meets the semiconductor substrate region at a p-n junction. A gate electrode is formed on the semiconductor substrate region and electrically is electrically isolated from the semiconductor substrate region by a gate dielectric. A body region having the second conductivity type is disposed on opposite sides of the gate electrode near a surface of the semiconductor substrate. A source region having the first conductivity type is disposed within in the body region on opposite sides of the gate electrode near the surface of the semiconductor substrate.
    Type: Application
    Filed: July 23, 2015
    Publication date: November 12, 2015
    Inventors: Tai-I Yang, Shou-Wei Lee, Shao-Chi Yu, Hong-Seng Shue, Kun-Ming Huang, Po-Tao Chu
  • Publication number: 20150308743
    Abstract: An apparatus may include a vessel adapted to contain an organic solvent and a dehydration apparatus coupled with the vessel. The dehydration apparatus may be adapted to remove water from the organic solvent. The apparatus may further include a water content monitor coupled to the dehydration apparatus and the vessel, in which the water content monitor is adapted to determine a water content of the organic solvent. The apparatus may further include a wafer handler adapted to transfer at least one semiconductor wafer including a MEMS device into the vessel.
    Type: Application
    Filed: June 17, 2015
    Publication date: October 29, 2015
    Inventors: Tai-I Yang, Ming-Tai Chung, Hong-Seng Shue, Ming-Yi Lin
  • Patent number: 9096428
    Abstract: Methods and apparatus for MEMS release are disclosed. A method is described including providing a substrate including at least one MEMS device supported by a sacrificial layer; performing an etch in solution to remove the sacrificial layer from at least one MEMS device; immersing the substrate including the at least one MEMS device in an organic solvent; and while the substrate is immersed in the organic solvent, removing water from the organic solvent until the water remaining in the organic solvent is less than a predetermined threshold. An apparatus is disclosed for performing the methods. Additional alternative methods are disclosed.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: August 4, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tai-I Yang, Ming-Tai Chung, Hong-Seng Shue, Ming-Yi Lin
  • Patent number: 9093520
    Abstract: A high-voltage super junction device is disclosed. The device includes a semiconductor substrate region having a first conductivity type and having neighboring trenches disposed therein. The neighboring trenches each have trench sidewalls and a trench bottom surface. A region having a second conductivity type is disposed in or adjacent to a trench and meets the semiconductor substrate region at a p-n junction. A gate electrode is formed on the semiconductor substrate region and is electrically isolated from the semiconductor substrate region by a gate dielectric. A body region having the second conductivity type is disposed on opposite sides of the gate electrode near a surface of the semiconductor substrate. A source region having the first conductivity type is disposed within in the body region on opposite sides of the gate electrode near the surface of the semiconductor substrate.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: July 28, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Shou-Wei Lee, Shao-Chi Yu, Hong-Seng Shue, Kun-Ming Huang, Po-Tao Chu
  • Publication number: 20150076660
    Abstract: A semiconductor structure includes a semiconductor substrate, a first doped region, a second doped region and a dielectric. The first doped region and the second doped region respectively has an aspect ratio and a dopant concentration uniformity along a depth in the semiconductor substrate. The dielectric is between the first doped region and the second doped region. The dopant concentration uniformity is within 0.2% and the aspect ratio of the semiconductor substrate is greater than about 10.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: TAI-I YANG, HONG-SENG SHUE, KUN-MING HUANG, CHIH-HENG SHEN, PO-TAO CHU
  • Patent number: 8975153
    Abstract: A method for forming a semiconductor device includes forming a hard mask layer over a substrate comprising a semiconductor material of a first conductivity type, and forming a plurality of trenches in the hard mask layer and extending into the substrate. Each trench has at least one side wall and a bottom wall. The method further includes forming at least one barrier insulator layer along the at least one side wall and over the bottom wall of each trench, removing the at least one barrier insulator layer over the bottom wall of each trench, and filling the plurality of trenches with a semiconductor material of a second conductivity type.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Hong-Seng Shue, Kun-Ming Huang, Tzu-Cheng Chen, Ming-Che Yang, Po-Tao Chu
  • Publication number: 20150061007
    Abstract: A high-voltage super junction device is disclosed. The device includes a semiconductor substrate region having a first conductivity type and having neighboring trenches disposed therein. The neighboring trenches each have trench sidewalls and a trench bottom surface. A region having a second conductivity type is disposed in or adjacent to a trench and meets the semiconductor substrate region at a p-n junction. A gate electrode is formed on the semiconductor substrate region and electrically is electrically isolated from the semiconductor substrate region by a gate dielectric. A body region having the second conductivity type is disposed on opposite sides of the gate electrode near a surface of the semiconductor substrate. A source region having the first conductivity type is disposed within in the body region on opposite sides of the gate electrode near the surface of the semiconductor substrate.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Shou-Wei Lee, Shao-Chi Yu, Hong-Seng Shue, Kun-Ming Huang, Po-Tao Chu
  • Patent number: 8953155
    Abstract: Embodiments of mechanisms of an optical inspection system for inspecting an object are provided. The optical inspection system includes a light source emitting a coherent beam having a first width, and a beam expander increasing the first width to a second width. The optical inspection system also includes an polaroid module adjacent to the beam expander and polarizing the coherent beam. The object generates an inspection beam with an interference pattern by reflecting the polarized coherent beam. The optical inspection system further includes an image module capturing the inspection beam.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Hong-Seng Shue, Ming-Tai Chung
  • Publication number: 20140264559
    Abstract: A method for forming a semiconductor device includes forming a hard mask layer over a substrate comprising a semiconductor material of a first conductivity type, and forming a plurality of trenches in the hard mask layer and extending into the substrate. Each trench has at least one side wall and a bottom wall. The method further includes forming at least one barrier insulator layer along the at least one side wall and over the bottom wall of each trench, removing the at least one barrier insulator layer over the bottom wall of each trench, and filling the plurality of trenches with a semiconductor material of a second conductivity type.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 18, 2014
    Inventors: Tai-I Yang, Hong-Seng Shue, Kun-Ming Huang, Tzu-Cheng Chen, Ming-Che Yang, Po-Tao Chu
  • Publication number: 20130341757
    Abstract: The present disclosure relates to a method of fabricating a semiconductor device. A semiconductor device includes a bond pad and a fuse layer. The bond pad includes a coating on an upper surface. A dielectric layer is formed over the bond pad and the fuse layer. A passivation layer is formed over the dielectric layer. An etch is performed to form a bond pad opening and a fuse opening. The etch is performed using only a single mask. The fuse opening defines a fuse window. The upper surface of the bond pad is exposed by substantially removing the coating from the entire upper surface.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Marcus Yang, Chih-Hao Lin, Hong-Seng Shue, Ruei-Hung Jang
  • Publication number: 20130320459
    Abstract: A device includes a semiconductor substrate, a contact plug over the semiconductor substrate, and an Inter-Layer Dielectric (ILD) layer over the semiconductor substrate, with the contact plug being disposed in the ILD. An air gap is sealed by a portion of the ILD and the semiconductor substrate. The air gap forms a full air gap ring encircling a portion of the semiconductor substrate.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hong-Seng Shue, Tai-I Yang, Wei-Ding Wu, Ming-Tai Chung, Shao-Chi Yu
  • Patent number: 8558330
    Abstract: A micromechanical systems (MEMs) pressure sensor includes a semiconductor substrate having a deep well located within a first surface and a cavity located within a second, opposing surface. The semiconductor substrate has a first doping type. The deep well has a second doping type, with a gradient doping profile, thereby forming a PN junction within the substrate. The cavity forms a diaphragm, which is a substrate section that is thinner than the surrounding substrate sections, that comprises the deep well. One or more pizeoresistor elements are located within the deep well. The piezoresistors are sensitive to deformations, such as bending, in the diaphragm caused by changes in the pressure of the cavity.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: October 15, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Chi Yu, Hong-Seng Shue
  • Publication number: 20130105923
    Abstract: A micromechanical systems (MEMs) pressure sensor includes a semiconductor substrate having a deep well located within a first surface and a cavity located within a second, opposing surface. The semiconductor substrate has a first doping type. The deep well has a second doping type, with a gradient doping profile, thereby forming a PN junction within the substrate. The cavity forms a diaphragm, which is a substrate section that is thinner than the surrounding substrate sections, that comprises the deep well. One or more pizeoresistor elements are located within the deep well. The piezoresistors are sensitive to deformations, such as bending, in the diaphragm caused by changes in the pressure of the cavity.
    Type: Application
    Filed: July 5, 2012
    Publication date: May 2, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Chi Yu, Hong-Seng Shue