Patents by Inventor Hongguang Zhang

Hongguang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180350839
    Abstract: A transistor is fabricated by growing an epitaxial layer of semiconductor material on a semiconductor layer and forming an opening extending through the epitaxial layer at the gate location. This opening provides, from the epitaxial layer, a source epitaxial region on one side of the opening and a drain epitaxial region on an opposite side of the opening. The source epitaxial region and a first portion of the semiconductor layer underlying the source epitaxial region are annealed into a single crystal transistor source region. Additionally, the drain epitaxial region and a second portion of the semiconductor layer underlying the drain epitaxial region are annealed into a single crystal transistor drain region. A third portion of the semiconductor layer between the transistor source and drain regions forms a transistor channel region. A transistor gate electrode is then formed in the opening above the transistor channel region.
    Type: Application
    Filed: July 31, 2018
    Publication date: December 6, 2018
    Applicant: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Patent number: 10121874
    Abstract: An integrated circuit includes a source-drain region, a channel region adjacent to the source-drain region, a gate structure extending over the channel region and a sidewall spacer on a side of the gate structure and which extends over the source-drain region. A dielectric layer is provided in contact with the sidewall spacer and having a top surface. The gate structure includes a gate electrode and a gate contact extending from the gate electrode as a projection to reach the top surface. The side surfaces of the gate electrode and a gate contact are aligned with each other. The gate dielectric layer for the transistor positioned between the gate electrode and the channel region extends between the gate electrode and the sidewall spacer and further extends between the gate contact and the sidewall spacer.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: November 6, 2018
    Assignee: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Patent number: 10103252
    Abstract: A vertical junction field effect transistor (JFET) is supported by a semiconductor substrate that includes a source region within the semiconductor substrate doped with a first conductivity-type dopant. A fin of semiconductor material doped with the first conductivity-type dopant has a first end in contact with the source region and further includes a second end and sidewalls between the first and second ends. A drain region is formed of first epitaxial material grown from the second end of the fin and doped with the first conductivity-type dopant. A gate structure is formed of second epitaxial material grown from the sidewalls of the fin and doped with a second conductivity-type dopant.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: October 16, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Qing Liu, John Hongguang Zhang
  • Patent number: 10074606
    Abstract: A semiconductor substrate includes a doped region. A premetallization dielectric layer extends over the semiconductor substrate. A first metallization layer is disposed on a top surface of the premetallization dielectric layer. A metal contact extends from the first metallization layer to the doped region. The premetallization dielectric layer includes sub-layers, and the first metal contact is formed by sub-contacts, each sub-contact formed in one of the sub-layers. Each first sub-contact has a width and a length, wherein the lengths of the sub-contacts forming the metal contact are all different from each other.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: September 11, 2018
    Assignee: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Publication number: 20180166469
    Abstract: A transistor includes an active region supported by a substrate and having a source region, a channel region and a drain region. A gate stack extends over the channel region and a first sidewall surrounds the gate stack. A raised source region and a raised drain region are provided over the source and drain regions, respectively, of the active region adjacent the first sidewall. A second sidewall peripherally surrounds each of the raised source region and raised drain region. The second sidewall extends above a top surface of the raised source region and raised drain region to define regions laterally delimited by the first and second sidewalls. A conductive material fills the regions to form a source contact and a drain contact to the raised source region and raised drain region, respectively.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 14, 2018
    Applicant: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Publication number: 20180102395
    Abstract: A memory cell includes a substrate layer, with a plurality of silicided semiconductor fins stacked on the substrate layer and spaced apart from one another. A first metal liner layer is stacked on the plurality of silicided semiconductor fins and on the substrate layer. A plurality of first contact pillars are stacked on the first metal liner layer adjacent a different respective one of the plurality of silicided semiconductor fins. A configurable resistance structure covers portions of the first metal liner layer that are stacked on the substrate layer and portions of the first metal liner layer that are stacked on each of the plurality of silicided semiconductor fins. A metal fill layer is stacked on the configurable resistance structure. A plurality of second contact pillars is stacked on the metal fill layer adjacent a space between a different pair of adjacent silicided semiconductor fins of the plurality thereof.
    Type: Application
    Filed: December 1, 2017
    Publication date: April 12, 2018
    Applicant: STMicroelectronics, Inc.
    Inventors: Qing Liu, John Hongguang Zhang
  • Patent number: 9922993
    Abstract: A transistor includes an active region supported by a substrate and having a source region, a channel region and a drain region. A gate stack extends over the channel region and a first sidewall surrounds the gate stack. A raised source region and a raised drain region are provided over the source and drain regions, respectively, of the active region adjacent the first sidewall. A second sidewall peripherally surrounds each of the raised source region and raised drain region. The second sidewall extends above a top surface of the raised source region and raised drain region to define regions laterally delimited by the first and second sidewalls. A conductive material fills the regions to form a source contact and a drain contact to the raised source region and raised drain region, respectively.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: March 20, 2018
    Assignee: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Patent number: 9865653
    Abstract: A memory cell includes a substrate layer, with a plurality of silicided semiconductor fins stacked on the substrate layer and spaced apart from one another. A first metal liner layer is stacked on the plurality of silicided semiconductor fins and on the substrate layer. A plurality of first contact pillars are stacked on the first metal liner layer adjacent a different respective one of the plurality of silicided semiconductor fins. A configurable resistance structure covers portions of the first metal liner layer that are stacked on the substrate layer and portions of the first metal liner layer that are stacked on each of the plurality of silicided semiconductor fins. A metal fill layer is stacked on the configurable resistance structure. A plurality of second contact pillars ism stacked on the metal fill layer adjacent a space between a different pair of adjacent silicided semiconductor fins of the plurality thereof.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: January 9, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Qing Liu, John Hongguang Zhang
  • Patent number: 9818930
    Abstract: A support structure includes an internal cavity. An elastic membrane extends to divide the internal cavity into a first chamber and a second chamber. The elastic membrane includes a nanometric-sized pin hole extending there through to interconnect the first chamber to the second chamber. The elastic membrane is formed of a first electrode film and a second electrode film separated by a piezo insulating film. Electrical connection leads are provided to support application of a bias current to the first and second electrode films of the elastic membrane. In response to an applied bias current, the elastic membrane deforms by bending in a direction towards one of the first and second chambers so as to produce an increase in a diameter of the pin hole.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: November 14, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventor: John Hongguang Zhang
  • Patent number: 9786551
    Abstract: An integrated circuit includes a substrate with an interlevel dielectric layer positioned above the substrate. First trenches having a first depth are formed in the interlevel dielectric layer and a metal material fills the first trenches to form first interconnection lines. Second trenches having a second depth are also formed in the interlevel dielectric layer and filled with a metal material to form second interconnection lines. The first and second interconnection lines have a substantially equal pitch, which in a preferred implementation is a sub-lithographic pitch, and different resistivities due to the difference in trench depth. The first and second trenches are formed with an etching process through a hard mask having corresponding first and second openings of different depths. A sidewall image transfer process is used to define sub-lithographic structures for forming the first and second openings in the hard mask.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: October 10, 2017
    Assignees: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John Hongguang Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise
  • Publication number: 20170250198
    Abstract: A transistor is fabricated by growing an epitaxial layer of semiconductor material on a semiconductor layer and forming an opening extending through the epitaxial layer at the gate location. This opening provides, from the epitaxial layer, a source epitaxial region on one side of the opening and a drain epitaxial region on an opposite side of the opening. The source epitaxial region and a first portion of the semiconductor layer underlying the source epitaxial region are annealed into a single crystal transistor source region. Additionally, the drain epitaxial region and a second portion of the semiconductor layer underlying the drain epitaxial region are annealed into a single crystal transistor drain region. A third portion of the semiconductor layer between the transistor source and drain regions forms a transistor channel region. A transistor gate electrode is then formed in the opening above the transistor channel region.
    Type: Application
    Filed: May 17, 2017
    Publication date: August 31, 2017
    Applicant: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Publication number: 20170222018
    Abstract: An integrated circuit includes a source-drain region, a channel region adjacent to the source-drain region, a gate structure extending over the channel region and a sidewall spacer on a side of the gate structure and which extends over the source-drain region. A dielectric layer is provided in contact with the sidewall spacer and having a top surface. The gate structure includes a gate electrode and a gate contact extending from the gate electrode as a projection to reach the top surface. The side surfaces of the gate electrode and a gate contact are aligned with each other. The gate dielectric layer for the transistor positioned between the gate electrode and the channel region extends between the gate electrode and the sidewall spacer and further extends between the gate contact and the sidewall spacer.
    Type: Application
    Filed: April 12, 2017
    Publication date: August 3, 2017
    Applicant: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Publication number: 20170194244
    Abstract: A semiconductor substrate includes a doped region. A premetallization dielectric layer extends over the semiconductor substrate. A first metallization layer is disposed on a top surface of the premetallization dielectric layer. A metal contact extends from the first metallization layer to the doped region. The premetallization dielectric layer includes sub-layers, and the first metal contact is formed by sub-contacts, each sub-contact formed in one of the sub-layers. Each first sub-contact has a width and a length, wherein the lengths of the sub-contacts forming the metal contact are all different from each other.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 6, 2017
    Applicant: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Patent number: 9685456
    Abstract: A transistor device is fabricated by growing an epitaxial layer of semiconductor material on a semiconductor layer and forming an opening extending through the epitaxial layer at a position where a gate is to be located. This opening provides, from the epitaxial layer, a source epitaxial region on one side of the opening and a drain epitaxial region on an opposite side of the opening. The source epitaxial region and a first portion of the semiconductor layer underlying the source epitaxial region are then converted into a transistor source region. Additionally, the drain epitaxial region and a second portion of the semiconductor layer underlying the drain epitaxial region are converted into a transistor drain region. A third portion of the semiconductor layer between the transistor source and drain regions forms a transistor channel region. A transistor gate electrode is then formed in the opening above the transistor channel region.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: June 20, 2017
    Assignee: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Patent number: 9679847
    Abstract: An integrated circuit includes a source-drain region, a channel region adjacent to the source-drain region, a gate structure extending over the channel region and a sidewall spacer on a side of the gate structure and which extends over the source-drain region. A dielectric layer is provided in contact with the sidewall spacer and having a top surface. The gate structure includes a gate electrode and a gate contact extending from the gate electrode as a projection to reach the top surface. The side surfaces of the gate electrode and a gate contact are aligned with each other. The gate dielectric layer for the transistor positioned between the gate electrode and the channel region extends between the gate electrode and the sidewall spacer and further extends between the gate contact and the sidewall spacer.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: June 13, 2017
    Assignee: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Patent number: 9640483
    Abstract: A semiconductor substrate includes a doped region. A premetallization dielectric layer extends over the semiconductor substrate. A first metallization layer is disposed on a top surface of the premetallization dielectric layer. A metal contact extends from the first metallization layer to the doped region. The premetallization dielectric layer includes sub-layers, and the first metal contact is formed by sub-contacts, each sub-contact formed in one of the sub-layers. Each first sub-contact has a width and a length, wherein the lengths of the sub-contacts forming the metal contact are all different from each other.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 2, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventor: John Hongguang Zhang
  • Publication number: 20170077270
    Abstract: A vertical junction field effect transistor (JFET) is supported by a semiconductor substrate that includes a source region within the semiconductor substrate doped with a first conductivity-type dopant. A fin of semiconductor material doped with the first conductivity-type dopant has a first end in contact with the source region and further includes a second end and sidewalls between the first and second ends. A drain region is formed of first epitaxial material grown from the second end of the fin and doped with the first conductivity-type dopant. A gate structure is formed of second epitaxial material grown from the sidewalls of the fin and doped with a second conductivity-type dopant.
    Type: Application
    Filed: November 28, 2016
    Publication date: March 16, 2017
    Applicant: STMicroelectronics, Inc.
    Inventors: Qing Liu, John Hongguang Zhang
  • Publication number: 20170069661
    Abstract: A transistor device is fabricated by growing an epitaxial layer of semiconductor material on a semiconductor layer and forming an opening extending through the epitaxial layer at a position where a gate is to be located. This opening provides, from the epitaxial layer, a source epitaxial region on one side of the opening and a drain epitaxial region on an opposite side of the opening. The source epitaxial region and a first portion of the semiconductor layer underlying the source epitaxial region are then converted into a transistor source region. Additionally, the drain epitaxial region and a second portion of the semiconductor layer underlying the drain epitaxial region are converted into a transistor drain region. A third portion of the semiconductor layer between the transistor source and drain regions forms a transistor channel region. A transistor gate electrode is then formed in the opening above the transistor channel region.
    Type: Application
    Filed: October 20, 2015
    Publication date: March 9, 2017
    Applicant: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Publication number: 20170047349
    Abstract: A transistor includes an active region supported by a substrate and having a source region, a channel region and a drain region. A gate stack extends over the channel region and a first sidewall surrounds the gate stack. A raised source region and a raised drain region are provided over the source and drain regions, respectively, of the active region adjacent the first sidewall. A second sidewall peripherally surrounds each of the raised source region and raised drain region. The second sidewall extends above a top surface of the raised source region and raised drain region to define regions laterally delimited by the first and second sidewalls. A conductive material fills the regions to form a source contact and a drain contact to the raised source region and raised drain region, respectively.
    Type: Application
    Filed: October 13, 2016
    Publication date: February 16, 2017
    Applicant: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Patent number: 9570512
    Abstract: A resistive random access memory (RRAM) structure is formed on a supporting substrate and includes a first electrode and a second electrode. The first electrode is made of a silicided fin on the supporting substrate and a first metal liner layer covering the silicided fin. A layer of dielectric material having a configurable resistive property covers at least a portion of the first metal liner. The second electrode is made of a second metal liner layer covering the layer of dielectric material and a metal fill in contact with the second metal liner layer. A non-volatile memory cell includes the RRAM structure electrically connected between an access transistor and a bit line.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: February 14, 2017
    Assignee: STMicroelectronics, Inc.
    Inventors: Qing Liu, John Hongguang Zhang