Patents by Inventor Hongxia Feng

Hongxia Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12354883
    Abstract: Various embodiments disclosed relate to methods of making omni-directional semiconductor interconnect bridges. The present disclosure includes semiconductor assemblies including a mold layer having mold material, a first filler material dispersed in the mold material, and a second filler material dispersed in the mold material, wherein the second filler material is heterogeneously dispersed.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: July 8, 2025
    Assignee: Intel Corporation
    Inventors: Bohan Shan, Dingying Xu, Kristof Darmawikarta, Srinivas Venkata Ramanuja Pietambaram, Hongxia Feng, Gang Duan, Jung Kyu Han, Xiaoying Guo, Jeremy D. Ecton, Santosh Tripathi, Bai Nie, Haobo Chen, Kyle Jordan Arrington, Yue Deng, Wei Wei
  • Publication number: 20250219021
    Abstract: In embodiments herein, circuit components are embedded within a core layer of a substrate. The circuit components are vertically oriented within a cavity or hole of the core layer of the substrate, e.g., with conductive contacts on an edge of the component that is substantially orthogonal to a plane of the core layer. The edge that is substantially orthogonal to a plane of the core layer may be the longest edge of the component.
    Type: Application
    Filed: December 27, 2023
    Publication date: July 3, 2025
    Applicant: Intel Corporation
    Inventors: Bohan Shan, Ziyin Lin, Ryan Joseph Carrazzone, Hongxia Feng, Hiroki Tanaka, Haobo Chen, Yiqun Bai, Kyle J. Arrington, Jose Fernando Waimin Almendares, Srinivas Venkata Ramanuja Pietambaram, Gang Duan, Dingying Xu, Brandon Christian Marin, Clay Bradley Arrington, Yongki Min, Joseph Allen Van Nausdle, Joseph F. Walczyk, Pooya Tadayon, Mohamed R. Saber
  • Publication number: 20250218880
    Abstract: Methods for fabricating glass cores with conductive vias (e.g., TGVs), as well as related devices, are disclosed. Methods described herein are based on fabricating pillars of conductive materials (e.g., metals or metal alloys) on a temporary support, inserting the pillars into corresponding via openings in a glass core, and at least partially filling the remaining space in the openings with a filler material.
    Type: Application
    Filed: December 29, 2023
    Publication date: July 3, 2025
    Inventors: Bohan Shan, Hongxia Feng, Haobo Chen, Jose Waimin, Ryan Carrazzone, Bin Mu, Ziyin Lin, Yiqun Bai, Kyle Jordan Arrington, Srinivas Venkata Ramanuja Pietambaram, Gang Duan, Dingying Xu, Jeremy Ecton, Brandon C. Marin, Xiaoying Guo
  • Publication number: 20250218906
    Abstract: Embodiments disclosed herein include apparatuses with assemblies comprising passive electrical devices that are embedded in a core of a package substrate. In an embodiment, such an apparatus may comprise a substrate with a first surface, a second surface opposite from the first surface, and a sidewall surface coupling the first surface to the second surface. In an embodiment the substrate comprises a passive electrical device. In an embodiment, a pad is on the first surface of the substrate, and a layer contacts the substrate. In an embodiment, the layer directly contacts the first surface and the sidewall surface of the substrate.
    Type: Application
    Filed: December 29, 2023
    Publication date: July 3, 2025
    Inventors: Zhixin XIE, Ziqing HAN, Srinivas Venkata Ramanuja PIETAMBARAM, Jung Kyu HAN, Gang DUAN, Yingying ZHANG, Minglu LIU, Manni MO, Kyle ARRINGTON, Clay ARRINGTON, Bohan SHAN, Ryan CARRAZZONE, Yiqun BAI, Ziyin LIN, Jose WAIMIN, Dingying David XU, Hongxia FENG, Yongki MIN, Brandon C. MARIN
  • Publication number: 20250220818
    Abstract: Embodiments disclosed herein include an apparatus with a component embedded in a core. Apparatuses disclosed herein may comprise a first component with a first surface and a second surface opposite from the first surface, where a pad is provided on the first surface. In an embodiment, a layer is over the second surface of the first component, and a second component is over the layer. In an embodiment, the second component comprises a hole that passes through at least a partial thickness of the second component.
    Type: Application
    Filed: December 27, 2023
    Publication date: July 3, 2025
    Inventors: Bohan SHAN, Wei LI, Jose WAIMIN, Ryan CARRAZZONE, Kyle ARRINGTON, Ziyin LIN, Hongxia FENG, Yiqun BAI, Haobo CHEN, Dingying David XU, Yongki MIN, Clay ARRINGTON, Srinivas Venkata Ramanuja PIETAMBARAM, Gang DUAN, Xiaoying GUO
  • Publication number: 20250218904
    Abstract: Technologies for components embedded in a substrate core are disclosed. In one embodiment, power components such as deep trench capacitors are disposed in a cavity defined in a substrate core for a circuit board of an integrated circuit package, such as a processor. A spacer may be included between the power components. The power components are stacked on top of each other, allowing for the stack of power components to match the height of the substrate core, even when the height of the individual power components is less than the height of the substrate core. Configuring the power components in this manner can provide mechanical stability to the power components and substrate core and provide power to a semiconductor die mounted on the circuit board.
    Type: Application
    Filed: December 28, 2023
    Publication date: July 3, 2025
    Applicant: Intel Corporation
    Inventors: Ziyin Lin, Bohan Shan, Kyle J. Arrington, Ryan Joseph Carrazzone, Jose Fernando Waimin Almendares, Hongxia Feng, Srinivas Venkata Ramanuja Pietambaram, Hiroki Tanaka, Haobo Chen, Gang Duan, Brandon Christian Marin, Yongki Min, Dingying Xu, Clay Bradley Arrington, Jeremy D. Ecton, Suddhasattwa Nad
  • Publication number: 20250219028
    Abstract: An apparatus is provided which comprises: a substrate core comprising a first core layer bonded with a second core layer, one or more redistribution layers on a first substrate core surface, one or more conductive contacts on a second substrate core surface opposite the first substrate core surface, one or more vias through the substrate core, a first circuit component embedded entirely within a cavity in the first core layer, the first circuit component coupled with a first redistribution layers surface, wherein the first circuit component and the first core layer have substantially equivalent heights, and wherein the first circuit component comprises a deep trench capacitor, and one or more integrated circuit devices coupled with a second redistribution layers surface opposite the first redistribution layers surface. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 28, 2023
    Publication date: July 3, 2025
    Applicant: Intel Corporation
    Inventors: Jeremy Ecton, Bohan Shan, Numair Ahmed, Nevin Erturk, Ziyin Lin, Ryan Carrazzone, Hongxia Feng, Hiroki Tanaka, Haobo Chen, Kyle Arrington, Jose Waimin, Srinivas Pietambaram, Gang Duan, Dingying Xu, Mohit Gupta, Brandon Marin, Xiaoying Guo, Clay Arrington
  • Publication number: 20250210426
    Abstract: Various techniques for alleviating crack formation and propagation in glass cores of microelectronic assemblies, and related devices and methods, are disclosed. The techniques are based on including fillers into glass cores and/or in layers provided on top and/or bottom of glass cores. The fillers have at least one characteristic indicative of material's resistance to breaking under stress being higher than that of glass, which may provide reinforcement and/or increase stiffness of glass, thereby strengthening glass cores. Examples of such characteristics include material strength, fracture toughness, or elastic modulus.
    Type: Application
    Filed: December 20, 2023
    Publication date: June 26, 2025
    Applicant: Intel Corporation
    Inventors: Bohan Shan, Mahdi Mohammadighaleni, Hiroki Tanaka, Kyle Jordan Arrington, Yiqun Bai, Whitney Bryks, Ryan Carrazzone, Haobo Chen, Gang Duan, Jeremy Ecton, Hongxia Feng, Xiaoying Guo, Shayan Kaviani, Ziyin Lin, Brandon C. Marin, Robert Alan May, Bin Mu, Bai Nie, Ala Omer, Srinivas Venkata Ramanuja Pietambaram, Dilan Seneviratne, Jose Waimin, Dingying Xu, Ehsan Zamani
  • Publication number: 20250183182
    Abstract: Various techniques for alleviating (e.g., mitigating or reducing) stresses between glass core materials and electrically conductive materials deposited in through-glass vias (TGVs) and related devices and methods are disclosed. In one aspect, a microelectronic assembly includes a glass core having a first face and a second face opposite the first face, and a TGV extending through the glass core between the first face and the second face, wherein the TGV includes a conductive material and a buffer layer between the conductive material and the glass core, wherein a CTE of the buffer layer is smaller than a CTE of the conductive material.
    Type: Application
    Filed: November 30, 2023
    Publication date: June 5, 2025
    Inventors: Bohan Shan, Mahdi Mohammadighaleni, Joshua Stacey, Ehsan Zamani, Aaditya Candadai, Jacob Vehonsky, Daniel Wandera, Mitchell Page, Srinivas Venkata Ramanuja Pietambaram, Gang Duan, Jeremy Ecton, Brandon C. Marin, Onur Ozkan, Vinith Bejugam, Dhruba Pattadar, Amm Hasib, Nicholas Haehn, Makoyi Watson, Sanjay Tharmarajah, Jason M. Gamba, Yuqin Li, Astitva Tripathi, Mohammad Mamunur Rahman, Haifa Hariri, Shayan Kaviani, Logan Myers, Darko Grujicic, Elham Tavakoli, Whitney Bryks, Dilan Seneviratne, Bainye Angoua, Peumie Abeyratne Kuragama, Hongxia Feng, Kyle Jordan Arrington, Bai Nie, Jose Waimin, Ryan Carrazzone, Haobo Chen, Dingying Xu, Ziyin Lin, Yiqun Bai, Xiaoying Guo, Bin Mu, Thomas S. Heaton, Rahul N. Manepalli
  • Publication number: 20250183180
    Abstract: Embodiments disclosed herein include package substrates with bridge dies. In an embodiment, an apparatus comprises a first layer that is a glass layer. A via is provided through the first layer, where the via is electrically conductive. In an embodiment, a second layer is over the first layer, and the second layer comprises an organic dielectric material. In an embodiment, a cavity is provided in the second layer, where the via is within a footprint of the cavity. In an embodiment, a die is in the cavity. In an embodiment, the die is electrically coupled to the via.
    Type: Application
    Filed: December 5, 2023
    Publication date: June 5, 2025
    Inventors: Brandon C. MARIN, Robert Alan MAY, Minglu LIU, Bohan SHAN, Jason M. GAMBA, Lilia MAY, Tarek A. IBRAHIM, Hiroki TANAKA, Srinivas Venkata Ramanuja PIETAMBARAM, Jeremy D. ECTON, Gang DUAN, Suddhasattwa NAD, Benjamin DUONG, Haobo CHEN, Xiao LIU, Xiyu HU, Wei WEI, Bai NIE, Ziyin LIN, Kyle ARRINGTON, Jose WAIMIN, Ryan CARRAZZONE, Hongxia FENG, Dingying David XU, Bin MU, Mohit GUPTA, Xiaoying GUO, Yiqun BAI
  • Publication number: 20250149433
    Abstract: A package substrate and package assembly including a package substrate including a substrate body including electrical routing features therein and a surface layer and a plurality of first and second contact points on the surface layer including a first pitch and a second pitch, respectively, wherein the plurality of first contact points and the plurality of second contact points are continuous posts to the respective ones of the electrical routing features. A method including forming first conductive vias in a package assembly, wherein the first conductive vias include substrate conductive vias to electrical routing features in a package substrate and bridge conductive vias to bridge surface routing features of a bridge substrate; forming a first surface layer and a second surface layer on the package substrate; and forming second conductive vias through each of the first surface layer and the second surface layer to the bridge conductive vias.
    Type: Application
    Filed: January 13, 2025
    Publication date: May 8, 2025
    Inventors: Hongxia FENG, Dingying David XU, Sheng C. LI, Matthew L. TINGEY, Meizi JIAO, Chung Kwang Christopher TAN
  • Publication number: 20250132239
    Abstract: Porous liners for through-glass vias and associated methods are disclosed. An example apparatus includes a glass layer having a through-hole. The example apparatus further includes a conductive material within the through-hole. The example apparatus also includes a porous material between at least a portion of the conductive material and at least a portion of a sidewall of the through-hole.
    Type: Application
    Filed: December 30, 2024
    Publication date: April 24, 2025
    Applicant: Intel Corporation
    Inventors: Hongxia Feng, Thomas Stanley Heaton, Shayan Kaviani, Yonggang Li, Mahdi Mohammadighaleni, Bai Nie, Dilan Seneviratne, Joshua James Stacey, Hiroki Tanaka, Elham Tavakoli, Ehsan Zamani
  • Publication number: 20250112085
    Abstract: An apparatus is provided which comprises: a plurality of interconnect layers within a substrate, organic dielectric material over the plurality of interconnect layers, copper pads on a surface of a cavity within the organic dielectric material, an integrated circuit bridge device coupled with the copper pads, wherein a surface of the integrated circuit bridge device is elevated above an opening of the cavity, underfill material between the integrated circuit bridge device and the surface of the cavity, and build-up layers formed over the organic dielectric material around the integrated circuit bridge device. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Applicant: Intel Corporation
    Inventors: Bohan Shan, Ziyin Lin, Haobo Chen, Yiqun Bai, Kyle Arrington, Jose Waimin, Ryan Carrazzone, Hongxia Feng, Dingying Xu, Srinivas Pietambaram, Minglu Liu, Seyyed Yahya Mousavi, Xinyu Li, Gang Duan, Wei Li, Bin Mu, Mohit Gupta, Jeremy Ecton, Brandon C. Marin, Xiaoying Guo, Ashay Dani
  • Publication number: 20250112164
    Abstract: A device comprises a substrate comprising a plurality of build-up layers and a cavity. A bridge die is located within the cavity and a plurality of cavity side bumps are on one side of the bridge die. A plurality of interconnect pads with variable heights are on one of the build-up layers of the substrate coupled to the plurality of the cavity side bumps to bond the bridge die to the substrate.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Inventors: Bohan SHAN, Onur OZKAN, Ryan CARRAZZONE, Rui ZHANG, Haobo CHEN, Ziyin LIN, Yiqun BAI, Kyle ARRINGTON, Jose WAIMIN, Hongxia FENG, Srinivas Venkata Ramanuja PIETAMBARAM, Gang DUAN, Dingying David XU, Bin MU, Mohit GUPTA, Jeremy D. ECTON, Brandon C. MARIN, Xiaoying GUO, Steve S. CHO, Ali LEHAF, Venkata Rajesh SARANAM, Shripad GOKHALE, Kartik SRINIVASAN, Edvin CETEGEN, Mine KAYA, Nicholas S. HAEHN, Deniz TURAN
  • Publication number: 20250112124
    Abstract: DEEP CAVITY ARRANGEMENTS ON INTEGRATED CIRCUIT PACKAGING An electronic package, comprises a substrate core; dielectric material of one or more dielectric material layers over the substrate core, and having a plurality of metallization layers comprising an upper-most metallization layer; and an integrated circuit (IC) die embedded within the dielectric material and below the upper-most metallization layer. The package also has a metallization pattern within the dielectric material and below the IC die; and a gap within the dielectric material and extending around the metallization pattern.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 3, 2025
    Applicant: Intel Corporation
    Inventors: Jeremy Ecton, Aleksandar Aleksov, Leonel Arana, Gang Duan, Benjamin Duong, Hongxia Feng, Tarek Ibrahim, Brandon C. Marin, Tchefor Ndukum, Bai Nie, Srinivas Pietambaram, Bohan Shan, Matthew Tingey
  • Publication number: 20250112136
    Abstract: Embodiments disclosed herein include apparatuses with glass core package substrates. In an embodiment, an apparatus comprises a substrate with a first surface and a second surface opposite from the first surface. A sidewall is between the first surface and the second surface, and the substrate comprises a glass layer. In an embodiment, a via is provided through the substrate between the first surface and the second surface, and the via is electrically conductive. In an embodiment, a layer in contact with the sidewall of the substrate surrounds a perimeter of the substrate.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Inventors: Bohan SHAN, Jesse JONES, Zhixin XIE, Bai NIE, Shaojiang CHEN, Joshua STACEY, Mitchell PAGE, Brandon C. MARIN, Jeremy D. ECTON, Nicholas S. HAEHN, Astitva TRIPATHI, Yuqin LI, Edvin CETEGEN, Jason M. GAMBA, Jacob VEHONSKY, Jianyong MO, Makoyi WATSON, Shripad GOKHALE, Mine KAYA, Kartik SRINIVASAN, Haobo CHEN, Ziyin LIN, Kyle ARRINGTON, Jose WAIMIN, Ryan CARRAZZONE, Hongxia FENG, Srinivas Venkata Ramanuja PIETAMBARAM, Gang DUAN, Dingying David XU, Hiroki TANAKA, Ashay DANI, Praveen SREERAMAGIRI, Yi LI, Ibrahim EL KHATIB, Aaron GARELICK, Robin MCREE, Hassan AJAMI, Yekan WANG, Andrew JIMENEZ, Jung Kyu HAN, Hanyu SONG, Yonggang Yong LI, Mahdi MOHAMMADIGHALENI, Whitney BRYKS, Shuqi LAI, Jieying KONG, Thomas HEATON, Dilan SENEVIRATNE, Yiqun BAI, Bin MU, Mohit GUPTA, Xiaoying GUO
  • Publication number: 20250113434
    Abstract: Embodiments disclosed herein include package substrates with a glass core. In an embodiment, an apparatus comprises a substrate with a first surface and a second surface opposite from the first surface, and the substrate is a solid glass layer. In an embodiment, an opening is provided through a thickness of the substrate, where the opening comprises a sidewall that is non-orthogonal with the first surface of the substrate. In an embodiment a corner at a junction between the sidewall and the first surface is rounded. In an embodiment, a via is provided in the opening, where the via is electrically conductive.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 3, 2025
    Inventors: Bai NIE, Mitchell PAGE, Junxin WANG, Srinivas Venkata Ramanuja PIETAMBARAM, Haifa HARIRI, Nicholas S. HAEHN, Astitva TRIPATHI, Yuqin LI, Hongxia FENG, Haobo CHEN, Bohan SHAN, Hiroki TANAKA, Leonel R. ARANA, Yonggang Yong LI
  • Publication number: 20250106983
    Abstract: Embodiments disclosed herein include glass core package substrates with a stiffener. In an embodiment, an apparatus comprises a substrate with a first layer with a first width, where the first layer is a glass layer, a second layer under the first layer, where the second layer has a second width that is smaller than the first width, and a third layer over the first layer, where the third layer has a third width that is smaller than the first width. In an embodiment, the apparatus further comprises a metallic structure with a first portion and a second portion, where the first portion is over a top surface of the substrate and the second portion extends away from the first portion and covers at least a sidewall of the first layer.
    Type: Application
    Filed: September 27, 2023
    Publication date: March 27, 2025
    Inventors: Bohan SHAN, Kyle ARRINGTON, Dingying David XU, Ziyin LIN, Timothy GOSSELIN, Elah BOZORG-GRAYELI, Aravindha ANTONISWAMY, Wei LI, Haobo CHEN, Yiqun BAI, Jose WAIMIN, Ryan CARRAZZONE, Hongxia FENG, Srinivas Venkata Ramanuja PIETAMBARAM, Gang DUAN, Bin MU, Mohit GUPTA, Jeremy D. ECTON, Brandon C. MARIN, Xiaoying GUO, Ashay DANI
  • Publication number: 20250105074
    Abstract: Glass cores including protruding through glass vias and related methods are disclosed herein. An example substrate disclosed herein includes a glass core including a surface and a copper through glass via (TGV) extending through the glass core, the TGV including a protrusion extending from the surface.
    Type: Application
    Filed: December 11, 2024
    Publication date: March 27, 2025
    Applicant: Intel Corporation
    Inventors: Bohan Shan, Haobo Chen, Wei Wei, Jose Fernando Waimin Almendares, Ryan Joseph Carrazzone, Kyle Jordan Arrington, Ziyin Lin, Dingying Xu, Hongxia Feng, Yiqun Bai, Hiroki Tanaka, Brandon Christian Marin, Jeremy Ecton, Benjamin Taylor Duong, Gang Duan, Srinivas Venkata Ramanuja Pietambaram, Rui Zhang, Mohit Gupta
  • Patent number: 12255130
    Abstract: Processes and structures resulting therefrom for the improvement of high speed signaling integrity in electronic substrates of integrated circuit packages, which is achieved with the formation of airgap structures within dielectric material(s) between adjacent conductive routes that transmit/receive electrical signals, wherein the airgap structures decrease the capacitance and/or decrease the insertion losses in the dielectric material used to form the electronic substrates.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: March 18, 2025
    Assignee: Intel Corporation
    Inventors: Hongxia Feng, Jeremy Ecton, Aleksandar Aleksov, Haobo Chen, Xiaoying Guo, Brandon C. Marin, Zhiguo Qian, Daryl Purcell, Leonel Arana, Matthew Tingey