Patents by Inventor Hosadurga Shobha

Hosadurga Shobha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190181033
    Abstract: A method is presented forming a fully-aligned via (FAV) and airgaps within a semiconductor device. The method includes forming a plurality of copper (Cu) trenches within an insulating layer, forming a plurality of ILD regions over exposed portions of the insulating layer, selectively removing a first section of the ILD regions in an airgap region, and maintaining a second section of the ILD regions in a non-airgap region. The method further includes forming airgaps in the airgap region and forming a via in the non-airgap region contacting a Cu trench of the plurality of Cu trenches.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: Christopher J. Penny, Benjamin D. Briggs, Huai Huang, Lawrence A. Clevenger, Michael Rizzolo, Hosadurga Shobha
  • Publication number: 20190172783
    Abstract: A semiconductor interconnect structure and a method of fabricating the same are provided. The semiconductor interconnect structure includes a sea of interconnect lines including metal lines and neighboring dummy lines. The semiconductor interconnect structure further includes a dielectric layer arranged between the sea of lines.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Huai Huang, Christopher J. Penny, Michael Rizzolo, Hosadurga Shobha
  • Publication number: 20190172704
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Application
    Filed: January 17, 2019
    Publication date: June 6, 2019
    Inventors: Thomas J. Haigh, JR., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Patent number: 10312140
    Abstract: Apparatus and methods for dielectric gap fill evaluations are provided. In one example, a method can comprise providing a gap fill substrate over one or more interlayer dielectric trenches of a dielectric layer and over a first material located in the one or more interlayer dielectric trenches. The method can also comprise depositing a gap fill candidate material within one or more gap fill substrate trenches of the gap fill substrate. Furthermore, the method can comprise etching the gap fill candidate material until a void within the first material is identified. Additionally, the method can comprise filling the one or more gap fill substrate trenches with a second material to form one or more contacts with the first material to measure a leakage current of one or more pitches.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: June 4, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Isabel Cristina Chu, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Ekmini Anuja De Silva, Gauri Karve, Fee Li Lie, Nicole Adelle Saulnier, Indira Seshadri, Hosadurga Shobha
  • Patent number: 10242872
    Abstract: A method for reworking a semiconductor device includes, in a pattern stack formed on an interlevel dielectric (ILD) layer, polishing the pattern stack to remove a top hardmask layer of the pattern stack. Each hardmask layer of the pattern stack is selectively wet etched to remaining layers of the pattern stack and the ILD layer. A reworked pattern stack is reformed on the ILD layer.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Prasad Bhosale, Donald F. Canaperi, Raghuveer R. Patlolla, Cornelius B. Peethala, Hosadurga Shobha, Theodorus E. Standaert
  • Patent number: 10242865
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: March 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Haigh, Jr., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Patent number: 10236176
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: March 19, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Haigh, Jr., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Publication number: 20190067087
    Abstract: A method of forming a semiconductor device includes forming a dielectric spacer along sidewalls of a plurality of interconnect openings extending through a sacrificial dielectric layer and a first dielectric layer until a top portion of a first conductive material, the dielectric spacer includes a dielectric material having a dielectric constant higher than a dielectric constant of the sacrificial dielectric layer and higher than a dielectric constant of the first dielectric layer, conformally depositing a barrier liner within the plurality of interconnect openings above and in direct contact with the dielectric spacer, filling the interconnect openings with a second conductive material, removing the sacrificial dielectric layer to expose portions of the dielectric spacer above the first dielectric layer, and reducing a thickness of exposed portions of the dielectric spacer.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 28, 2019
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Huai Huang, Christopher J. Penny, Michael Rizzolo, Hosadurga Shobha
  • Publication number: 20180277369
    Abstract: A method for reworking a semiconductor device includes, in a pattern stack formed on an interlevel dielectric (ILD) layer, polishing the pattern stack to remove a top hardmask layer of the pattern stack. Each hardmask layer of the pattern stack is selectively wet etched to remaining layers of the pattern stack and the ILD layer. A reworked pattern stack is reformed on the ILD layer.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 27, 2018
    Inventors: John C. Arnold, Prasad Bhosale, Donald F. Canaperi, Raghuveer R. Patlolla, Cornelius B. Peethala, Hosadurga Shobha, Theodorus E. Standaert
  • Patent number: 10020254
    Abstract: Semiconductor devices including super via structures and BEOL processes for forming the same, according to embodiments of the invention, generally include removing selected portions of a nitride cap layer intermediate interconnect levels, wherein the selected portions correspond to the regions where the super via structure is to be formed and where underlying overlay alignment markers are located.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: July 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Joe Lee, Yann Mignot, Hosadurga Shobha, Junli Wang, Yongan Xu
  • Patent number: 10020255
    Abstract: Semiconductor devices including super via structures and BEOL processes for forming the same, according to embodiments of the invention, generally include removing selected portions of a nitride cap layer intermediate interconnect levels, wherein the selected portions correspond to the regions where the super via structure is to be formed and where underlying overlay alignment markers are located.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: July 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Joe Lee, Yann Mignot, Hosadurga Shobha, Junli Wang, Yongan Xu
  • Patent number: 10002831
    Abstract: A method for manufacturing a semiconductor device includes forming a dielectric layer on a substrate, forming a plurality of openings in the dielectric layer, conformally depositing a barrier layer on the dielectric layer and on sides and a bottom of each one of the plurality of openings, depositing a contact layer on the barrier layer in each one of the plurality of openings, removing a portion of each contact layer from each one of the plurality of openings, and removing a portion of the barrier layer from each one of the plurality of openings, wherein at least the removal of the portion of the barrier layer is performed using an etchant including: (a) a compound selected from group consisting of -azole, -triazole, and combinations thereof; (b) a compound containing one or more peroxy groups; (c) one or more alkaline metal hydroxides; and (d) water.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Elbert E. Huang, Raghuveer R. Patlolla, Cornelius B. Peethala, David L. Rath, Hosadurga Shobha
  • Patent number: 9947622
    Abstract: An electrical device including an opening in a low-k dielectric material, and a copper including structure present within the opening for transmitting electrical current. A liner is present between the opening and the copper including structure. The liner includes a superlattice structure comprised of a metal oxide layer, a metal layer present on the metal oxide layer, and a metal nitride layer that is present on the metal layer. A first layer of the superlattice structure that is in direct contact with the low-k dielectric material is one of said metal oxide layer and a final layer of the superlattice structure that is in direct contact with the copper including structure is one of the metal nitride layers.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Donald F. Canaperi, Daniel C. Edelstein, Alfred Grill, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini, Hosadurga Shobha
  • Publication number: 20170317026
    Abstract: A method for manufacturing a semiconductor device includes forming a dielectric layer on a substrate, forming a plurality of openings in the dielectric layer, conformally depositing a barrier layer on the dielectric layer and on sides and a bottom of each one of the plurality of openings, depositing a contact layer on the barrier layer in each one of the plurality of openings, removing a portion of each contact layer from each one of the plurality of openings, and removing a portion of the barrier layer from each one of the plurality of openings, wherein at least the removal of the portion of the barrier layer is performed using an etchant including: (a) a compound selected from group consisting of -azole, -triazole, and combinations thereof; (b) a compound containing one or more peroxy groups; (c) one or more alkaline metal hydroxides; and (d) water.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 2, 2017
    Inventors: Benjamin D. Briggs, Elbert E. Huang, Raghuveer R. Patlolla, Cornelius B. Peethala, David L. Rath, Hosadurga Shobha
  • Patent number: 9806023
    Abstract: A method for manufacturing a semiconductor device includes forming a dielectric layer on a substrate, forming a plurality of openings in the dielectric layer, conformally depositing a barrier layer on the dielectric layer and on sides and a bottom of each one of the plurality of openings, depositing a contact layer on the barrier layer in each one of the plurality of openings, removing a portion of each contact layer from each one of the plurality of openings, and removing a portion of the barrier layer from each one of the plurality of openings, wherein at least the removal of the portion of the barrier layer is performed using an etchant including: (a) a compound selected from group consisting of -azole, -triazole, and combinations thereof; (b) a compound containing one or more peroxy groups; (c) one or more alkaline metal hydroxides; and (d) water.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: October 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Elbert E. Huang, Raghuveer R. Patlolla, Cornelius B. Peethala, David L. Rath, Hosadurga Shobha
  • Publication number: 20170301624
    Abstract: A method for manufacturing a semiconductor device includes forming a dielectric layer on a substrate, forming a plurality of openings in the dielectric layer, conformally depositing a barrier layer on the dielectric layer and on sides and a bottom of each one of the plurality of openings, depositing a contact layer on the barrier layer in each one of the plurality of openings, removing a portion of each contact layer from each one of the plurality of openings, and removing a portion of the barrier layer from each one of the plurality of openings, wherein at least the removal of the portion of the barrier layer is performed using an etchant including: (a) a compound selected from group consisting of -azole, -triazole, and combinations thereof; (b) a compound containing one or more peroxy groups; (c) one or more alkaline metal hydroxides; and (d) water.
    Type: Application
    Filed: February 28, 2017
    Publication date: October 19, 2017
    Inventors: Benjamin D. Briggs, Elbert E. Huang, Raghuveer R. Patlolla, Cornelius B. Peethala, David L. Rath, Hosadurga Shobha
  • Publication number: 20170263449
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 14, 2017
    Inventors: Thomas J. Haigh, JR., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Publication number: 20170263451
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 14, 2017
    Inventors: Thomas J. Haigh, JR., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Patent number: 9735005
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: August 15, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Haigh, Jr., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Patent number: 9691705
    Abstract: An electrical device including an opening in a low-k dielectric material, and a copper including structure present within the opening for transmitting electrical current. A liner is present between the opening and the copper including structure. The liner includes a superlattice structure comprised of a metal oxide layer, a metal layer present on the metal oxide layer, and a metal nitride layer that is present on the metal layer. A first layer of the superlattice structure that is in direct contact with the low-k dielectric material is one of said metal oxide layer and a final layer of the superlattice structure that is in direct contact with the copper including structure is one of the metal nitride layers.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Donald F. Canaperi, Daniel C. Edelstein, Alfred Grill, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini, Hosadurga Shobha